APAM Conference Hot Mix Asphalt (HMA) Update

Revin Kennedy
Pavement Operations Engineer
Michigan Department of Transportation
2-23-2021

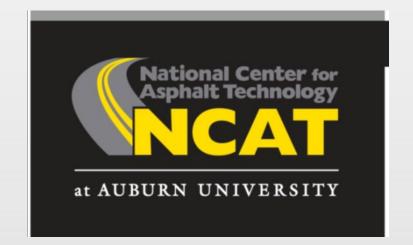
Hot Mix Asphalt (HMA) Update

- 2020 Spec Book/Reduction of Mixes
- Verification of Bulk Specific Gravity
- Targeted Overlay Pavement Solutions
- Local Volumetric Specification
- Fine Texture Pavement Milling

2020 Spec Book

- Reduction of HMA Mixes
- Incorporation of FUSPs
- Removal of Seasonal Limitations

National Peer Review


 States have reduced or simplified the number of gyration levels

Working towards simplifying gyration level categories

Michigan has too many different gyrations levels

Reduction of HMA Mixes

- LVSP and E03 combined into EL
- E1 and E3 combined into EML
- E10 and E30 combined into EMH
- E50 eliminated and replaced with EH
- Gap Graded Superpave (GGSP)
 renamed to Stone Matrix Asphalt
 (SMA) to be consistent with national
 standards

Reduction of Mixes

- Major changes made to Tables 501.2, 501.3 and 902.6
 - New Mix Design Designations
 - Changes mostly relevant to Mix Designers
- Minor changes to Tables 501.1, 501.4 and 902.5

Table 501-3

Existing Criteria								
Superpave Gyratory Compactor (SGC) Compaction Criteria								
Number of Gyrations								
Estimated Traffic (million ESAL)	Mix Type	%Gmm at (Ni)	Ni	Nd	Nm			
< 0.3	LVSP	91.50%	6	45	70			
< 0.3	E03	91.50%	7	50	75			
< 1.0	E1	90.50%	7	76	117			
< 3.0	E3	90.50%	7	86	134			
< 10	E10	89.00%	8	96	152			
< 30	E30	89.00%	8	109	174			
<100	E50	89.00%	9	126	204			

Proposed Criteria								
Superpave Gyratory Compactor (SGC) Compaction Criteria								
Number of Gyrations								
Estimated Traffic (million ESAL)	Mix Type	%Gmm at (Ni)	Ni	Nd	Nm			
≤ 0.3	EL	≤91.5%	6	50	70			
>0.3 - ≤3.0	EML	≤90.5%	7	75	115			
>3.0 - ≤30.0	ЕМН	≤89.0%	8	100	160			
>30.0 - ≤100	EH	≤89.0%	9	125	205			

Reduction of HMA Mixes

MICHIGAN DESIGN MANUAL ROAD DESIGN

6.03.09A1d (continued)

Hot Mix Asphalt (HMA) Mixture Selection Guidelines

North, Grand, Bay, Southwest and University Region

Horai, Grand, Bay, Coadimest and Cinversity Region							
Mixture Type	H	IMA Mainline	High Stress HMA				
E30, E50,	PG 70-28P	Top & Leveling Course	PG 76-28P	Top & Leveling Course			
GGSP	PG 64-22	Base Course	PG 64-22	Base Course			
E10	PG 64-28	Top & Leveling Course	PG 70-28P	Top & Leveling Course			
	PG 58-22	Base Course	PG 58-22	Base Course			
E3	PG 64-28	Top & Leveling Course	PG 70-28P	Top & Leveling Course			
	PG 58-22	Base Course	PG 58-22	Base Course			
LVSP, E03, E1	PG 58-28	Top & Leveling Course	PG 64-28	Top & Leveling Course			
	PG 58-22	Base Course	PG 58-22	Base Course			

Superior Region

Mixture Type		HMA Mainline	High Stress HMA		
E10	PG 58-34	Top & Leveling Course	PG 64-34P	Top & Leveling Course	
	PG 58-28	Base Course	PG 58-28	Base Course	
LVSP, E03, E1,	PG 58-34	Top & Leveling Course	PG 64-34P	Top & Leveling Course	
E3	PG 58-28	Base Course	PG 58-28	Base Course	

Metro Region

meno Region						
Mixture Type	-	IMA Mainline	High Stress HMA			
E30, E50,	PG 70-22P	Top & Leveling Course	PG 76-22P	Top & Leveling Course		
GGSP	PG 64-22	Base Course	PG 64-22	Base Course		
E10	PG 64-22	Top & Leveling Course	PG 70-22P	Top & Leveling Course		
	PG 58-22	Base Course	PG 58-22	Base Course		
E3	PG 64-22	Top & Leveling Course	PG 70-22P	Top & Leveling Course		
	PG 58-22	Base Course	PG 58-22	Base Course		
LVSP, E03, E1	PG 58-22	Top, Leveling & Base Course	PG 64-22 PG 58-22	Top & Leveling Course Base Course		

NOTES:

- For shoulders paved greater than or equal to 8 feet or in a separate operation, use PG 58-28 for all Regions.
- For Temporary Roads, commercial and private Approaches, Wedging, Ramps and Hand Patching, use PG 64-22 for all Regions except Superior and North, use PG 58-28.

Reduction of HMA Mixes

MICHIGAN DESIGN MANUAL ROAD DESIGN

6.03.09A1d (continued)

Hot Mix Asphalt (HMA) Mixture Selection Guidelines

North, Grand, Bay, Southwest and University Region

Mixture Type		ainline <mark>and Ramps</mark>	High Stress HMA		
EH, SMA	PG 70-28P	Top & Leveling Course	PG 76-28P	Top & Leveling Course	
	PG 64-22	Base Course	PG 64-22	Base Course	
EML, EMH	PG 64-28	Top & Leveling Course	PG 70-28P	Top & Leveling Course	
	PG 58-22	Base Course	PG 58-22	Base Course	
EL	PG 58-28	Top & Leveling Course	PG 64-28	Top & Leveling Course	
	PG 58-22	Base Course	PG 58-22	Base Course	

Superior Region

Mixture Type	HMA N	Mainline <mark>and Ramps</mark>	High Stress HMA			
EL, EML, EMH	PG 58-34 PG 58-28	Top & Leveling Course Base Course	PG 64-34P PG 58-28	Top & Leveling Course Base Course		

Metro Region

Mixture Type	нма м	ainline <mark> and Ramps</mark>	High Stress HMA		
EH, SMA	PG 70-22P	Top & Leveling Course	PG 76-22P	Top & Leveling Course	
	PG 64-22	Base Course	PG 64-22	Base Course	
EML, EMH	PG 64-22	Top & Leveling Course	PG 70-22P	Top & Leveling Course	
	PG 58-22	Base Course	PG 58-22	Base Course	
EL	PG 58-22	Top, Leveling & Base Course	PG 64-22 PG 58-22	Top & Leveling Course Base Course	

NOTES:

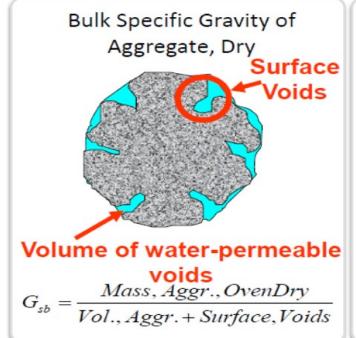
- 1. For shoulders paved greater than or equal to 8 feet or in a separate operation, use PG 58-28 for top and leveling course and PG 58-22 for base course for all Regions
- For Temporary Roads, commercial and private Approaches, Wedging, and Hand Patching, use PG 64-22 for all Regions except Superior and North, use PG 58-28.

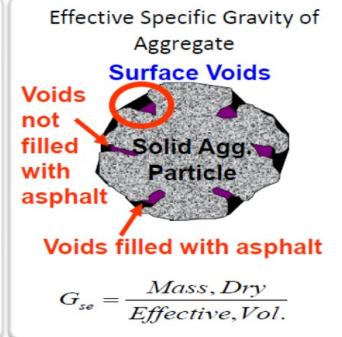
Removal of Seasonal Limitations

- Weather is a determining factor
- Seasonal limitations are often exceeded
- Project clauses in proposal dictate schedules
- Construction Manual Revisions will include guidance on timing of projects relative to HMA plant operations

FUSPs Incorporated Into 2020 Spec Book

- 501BB Safety Edge
- 501FF Low Tracking Bond Coat Emulsified Asphalt
- 501GG Cold Milling Hot Mix Asphalt Surface
- 501L Temporary Hot Mix Asphalt Pavement Quality and Compliance
- 501U & 501V Some terminology from PWL FUSPs incorporated


Verification of Specific Gravity


- Identified as an area of risk by FHWA/MDOT
 - \$4.25 million settlement with an Indiana construction company resolves claims of an alleged product substitution
 - Idaho highway contractors changed records hundreds of times then received bonuses
- Incorrect Gsb values affect asphalt content and pavement performance
- Contractors are required to submit a Gsb sample with all mix designs
 - This includes express mix designs
- During production Gse will be monitored

Verification of Specific Gravity

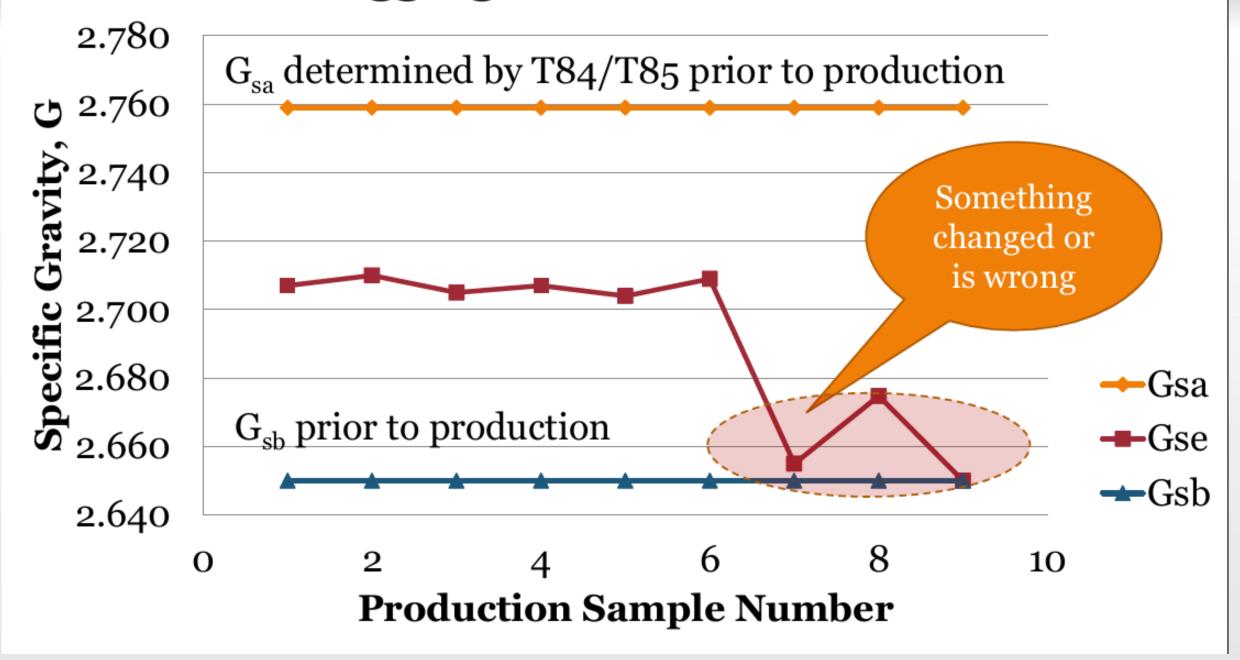
- Gsa= Apparent Specific Gravity
- Gse= Effective Specific Gravity
- Gsb= Bulk Specific Gravity

Aggregate - Specific Gravity

$$G_{sa} \ge G_{se} \ge G_{sb}$$
 (ALWAYS!)

Artificially High

G_{sb} VMA (%)


Lower
Asphalt
Content
(%)

0.010 0.3 0.15

0.020 0.6 0.30

0.040 1.2 0.60

Aggregate Control Chart

Michigan Department of Transportation 1903C (01/20)

DAILY REPORT OF CONTRACTOR'S QUALITY CONTROL TESTS

Clear Form

File 208

DISTRIBUTION: ORIGINAL - Project Engineer, COPIES - TMI

CONTROL SECTION	JOB NUI	WIDER	FRO	PROJECT LOCATION		MIX DESIGN NUMBER MIXTURE TYPE		DA	DATE SAMPLED DA		DATE IES	DATE TESTED					
CONTRACTOR				PLANT NO.				PLANT LOCATION			FORM 1911 DATE						
PROJECT ENGINEER			NAM	E OF TEST	ER (Ple	ease pri	int)		NAME OF	TESTER (Sig	gnature)		QUA	ALIFICA	ATION NUME	BER	
Gb	Gsb		Gse			SUBL	LOT SIZE		LOT NO SUBLOT N		SUBLOT NO		SUI		RANDOM	ACCUMUL	ATED TON
		TEST	RESUL	TS								TEST	RESU	LTS			
	JMF	CONTR	DEV	ACTION LIMITS*	SU	SP ITS*		AGG			JMF	CONTR		EV	ACTION LIMITS*	SUSP LIMITS*	
P 1-1/3" (37.5 mm)						\neg			ASPHALT	%							
P 1" (25.0 mm)									Gmm								
P ¾" (19.0 mm)					Ī				Gmb @ N	DESIGN							
P ½" (12.5 mm)									AIR VOID	s				$\overline{}$			
P 3/8" (9.5 mm)									VMA								
P No. 4 (4.75 mm)									VFA								
P No. 8 (2.36 mm)									F/A RATIO								
P No. 16 (1.18 mm)									Gse 🗸								
P No. 30 (600 µm)											GR	ADE	CERTIF	ED SUP	PLIER / LOCA	TION/CERT#	% ADD
P No. 50 (300 µm)									ASPHALT	BINDER							
P No. 100 (150 µm)									Gmb WEI	SHTS/COMPA	ACTION TEN	PERATUR	E				
P No. 200 (75 µm)									NUMBER	OF SOLVENT	WASHES (When using	the va	cuum e	xtraction met	hod for Aspha	alt %)
CRUSH - 1 FACE																	
CRUSH - 1 FACE CRUSH - 2 FACE																	

Gse added to 1903B and 1903C

Targeted Overlay Pavement Solutions (TOPS)

- Included as part of Every Day Counts (EDC) 6.
- Enable agencies to maximize their investment and help ensure safer, longer-lasting roadways.
- The goal of TOPS is to improve performance, lessen traffic impacts, and reduce the cost of pavement ownership.
- Targeted overlays match treatments to high-priority, high need locations.

Targeted Overlay Pavement Solutions (TOPS) (CEDC

- First step involves FHWA gathering status and interest in various fixes.
- Status ranges from "Not Implemented" to "Institutionalized".
- Potential outcome to include webinars, peer exchanges, pilot specifications, etc.

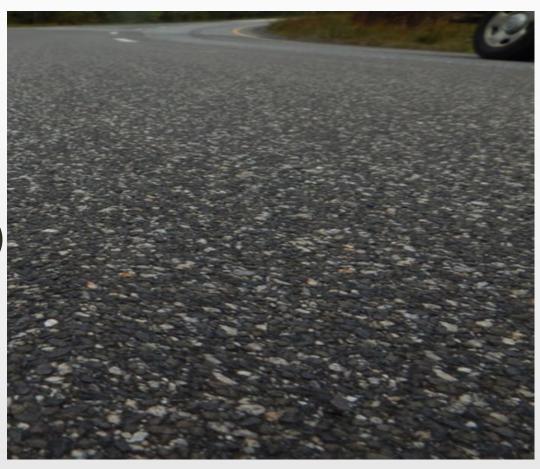
Targeted Overlay Pavement Solutions (TOPS) EEDC

- Stone Matrix Asphalt Institutionalized
- Ultra-Thin Bonded Wearing Course Institutionalized
- Open Graded Friction Course Not Implemented
- Crack Attenuating Mix Not Implemented
- Asphalt Rubber Gap Graded Not Implemented
- Highly Modified Asphalt Interested
- Enhanced Friction Overlay Interested
- High Performance Thin Overlay Interested

Targeted Overlay Pavement Solutions (TOPS)

High Performance Thin Overlay

- Similar to MDOT's Ultra-Thin
- Limits RAP and Sand
- Uses Performance Tests for Cracking and Rutting
- High Volume Routes



Targeted Overlay Pavement Solutions (TOPS)

Enhanced Friction Overlay

- Calcined Bauxite (40%)
- High Asphalt Content (8%)
- Comparable Friction to High
 Friction Surface Treatment (HFST)
- Reduced Cost to HFST

Targeted Overlay Pavement Solutions (TOPS)

Highly Modified Asphalt (HiMA)

- Binder Contains 7-8% Polymer
- Improves Cracking Resistance
- Possible Reduced Thickness
- Performance Testing
- Cost Concerns

E-Ticketing

- Safety: e-ticketing enhances data collection while reducing exposure to adjacent vehicular traffic and construction equipment for inspectors and work crews while retrieving paper tickets.
- **Time Savings:** real-time access via electronic handling of tickets, reduces processing time for quality assurance and payment, and decreases the inherent delays in paper-based project administration.
- Quality: project documentation is more consistent and efficient using eticketing platforms. Standardized data enables archiving for future reference, leading to improved design, construction, maintenance, and operations.

Local Agency Volumetric Specification

- Developed by County Road Association
- Volumetric single test acceptance of dense graded HMA mixture on Local Agency Projects
- Change in spec limits, penalties, and weighting of pay factors
- Pilots started in 2020

Local Agency Volumetric: Table 1

Quality Index Parameter	Specification Limits
Air Voids, %	Target Air Voids ± 0.50
Vma	Target Vma ± 0.60
	Vma Targets
13A and LVSP	15.00
2C and 2E	2C - 12.00, 2E - 13.00
3C and 3E	14.00
4C and 4E	15.00
36A and 5E	16.00
Binder Content	Target ± 0.30

Pay Factor for Air Voids (40%)

Deviation from JMF (± percent)	<u>PF_{AV}</u>
≤ 0.50	1.00
0.51 - 0.60	0.98
0.61 - 0.70	0.96
0.71 - 0.80	0.94
0.81 - 0.90	0.92
0.91 - 1.00	0.90
1.01 - 1.20	0.84
1.21 - 1.40	0.78
1.41 - 1.60	0.72
1.61 - 1.80	0.66
1.81 - 2.00	0.60
> 2.00	RQL

Pay Factor for Density (30%)

Direct Density

Deviation from JMF (± percent)	\underline{PF}_{D}
≥ 98.1	0.90
92.0 - 98.0	1.00
91.0 - 91.9	0.90
90.0 - 90.9	0.80
< 90.0	RQL

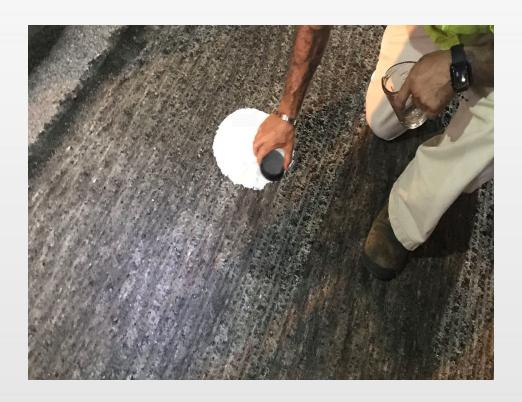
• Roller Method: If the established roller pattern is adhered to as documented by the Engineer, the PF_D is 1.00. If the Engineer documents issues with the roller pattern and non-adherence from the Contractor upon notification, the PF_D is 0.90. If it is necessary for the Engineer to stop production at any point during the STA sample paving due to non-adherence, the PF_D is 0.80.

Pay Factor for Binder (20%)

Deviation from JMF (± percent)	<u>PF</u> _{Binder}
≤ 0.30	1.00
0.31 - 0.50	0.90
0.51 - 0.70	0.80
0.71 - 0.90	0.60
0.91 - 1.00	0.40
> 1.00	RQL

Pay Factor for VMA (10%)

Deviation from JMF (± percent)	\underline{PF}_{VMA}
≤ 0.60	1.00
0.61 - 1.00	0.90
1.01 - 1.50	0.70
1.51 - 2.00	0.30
> 2.00	RQL


Fine Texture Pavement Milling

- 2012 FUSP 501JJ
- Use Statement:
 - Use on all trunkline, one course, non-freeway mill and resurface projects
 - Where the integrity of the existing pavement makes it suitable to allow traffic to be maintained on a milled surface for up to 72-hours and where it is desirable to expedite the project schedule and/or increase production paving
 - Due to the 72-hour traffic restriction the specification needs to be accompanied by a liquidated damages specification

Fine Texture Pavement Milling


• Ensure the milling operation is providing an acceptable surface texture by achieving a maximum macro texture of 0.08 inches thickness according to ASTM E 965

Fine Texture Pavement Milling

- How do we accomplish texture requirements?
 - Ensure the milling machine is configured with either a 0.3-inch tooth spacing or
 - A 0.6-inch tooth spacing operated at a maximum speed of 40 feet per minute or
 - Approved equal configuration and speed capable of meeting ASTM E 965 testing requirements
- Milled area is free from gouges, continuous grooves, and ridges, and has a uniform texture

Micro Cold Milling Hot Mix Asphalt (0-3.5 Inches)

Use Statement :

• Use on CPM Surface Seal projects that require the removal of a previous surface seal or where improved ride quality is desired. The integrity of the pavement should be suitable to allow traffic to be maintained on the milled surface.

Location:

- Previously Approved Special Provisions, Division 5 select "Special Provisions –
 2012 Previously Approved" from the drop-down menu at the following web site:
 https://mdotjboss.state.mi.us/SpecProv/specProvHome.htm
- This was developed for use on CPM projects.
- There is no traffic restriction written into the special provision.

Changes to Pavement/HMA Operations

- 2020
 - Pavement Operations Engineer: Curtis Bleech
 - HMA Operations Engineer: Kevin Kennedy
 - Mix Design Engineer: Nathan Maack
- 2021
 - Pavement Operations Engineer: Kevin Kennedy
 - Curtis Bleech retired November 2020
 - HMA Operations Engineer: Nathan Maack
 - Mix Design Engineer: VACANT

QUESTIONS?

Kevin Kennedy

Pavement Operations Engineer

Michigan Department of Transportation

KennedyK@Michigan.gov

