2023 APAM Conference Hot Mix Asphalt (HMA) Update

NATHAN MAACK HMA OPERATIONS MICHIGAN DEPARTMENT OF TRANSPORTATION

CHUCK MILLS ASPHALT PAVEMENT ASSOCIATION OF MICHIGAN

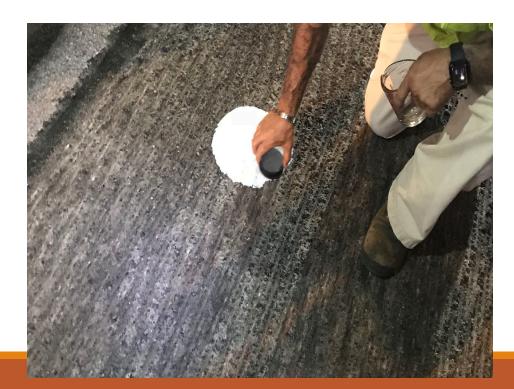
FEBRUARY 22, 2023

Fine Texture Pavement Milling

•FUSP 501J Combined with Micro Texture Milling

•For use on trunkline, one course, non-freeway mill and resurface projects

•Where the existing pavement condition allows for traffic to be maintained on the milled surface for up to 72 hours


•Allows for an increase in production paving and expedited project schedules

•Has a shorter paving train and requires fewer trucks in the work zone

Fine Texture Pavement Milling

Ensure the milling operation is providing an acceptable surface texture by achieving a maximum Macro texture of 0.08 inches thickness according to ASTM E 965.

Measuring Pavement Density

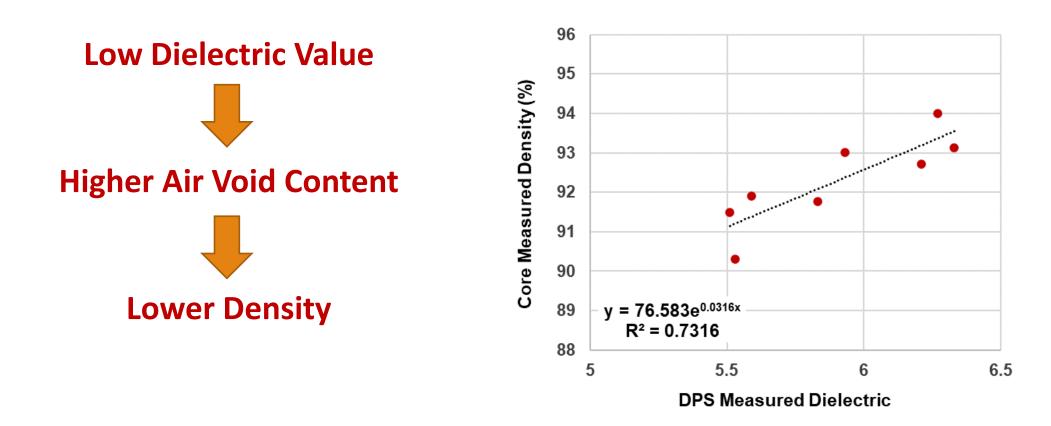
Density Profiling System (DPS)

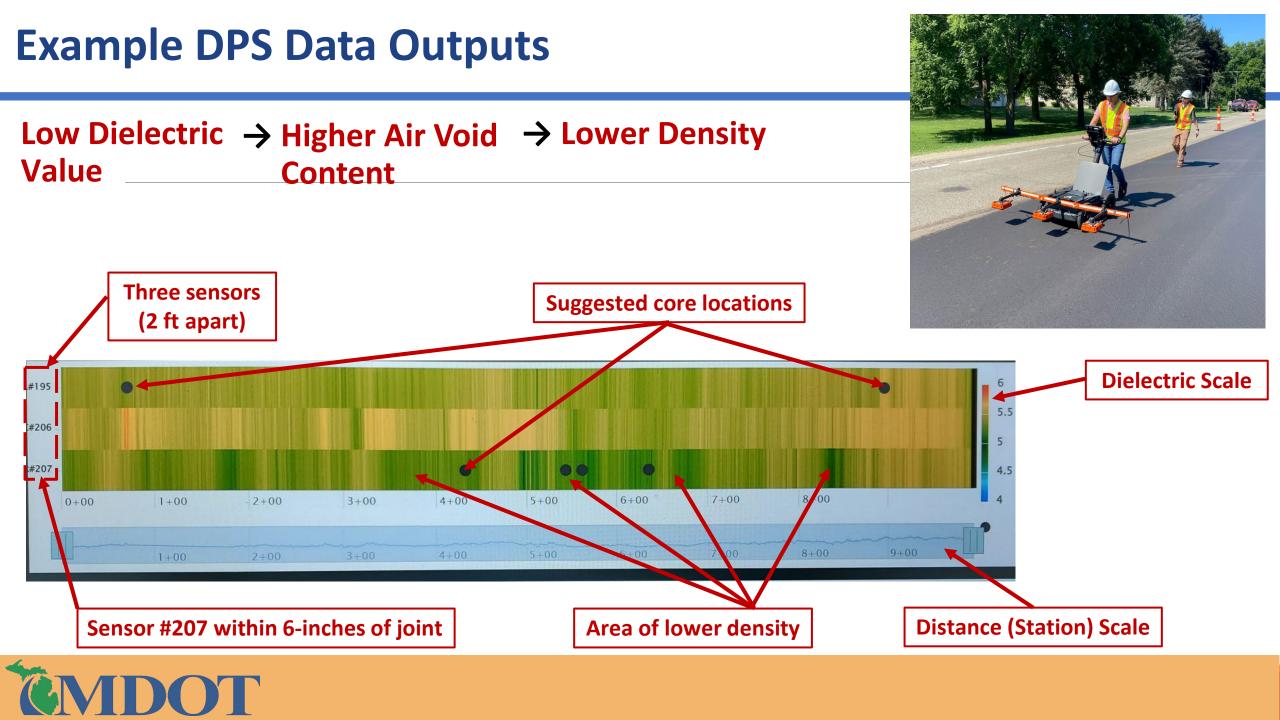
- Nondestructive, GPR-based technology
- Measures in-situ dielectric values
- Allows for on-site continuous evaluation of relative compaction effectiveness
 - For full surface layers and/or longitudinal joints



DPS Technology

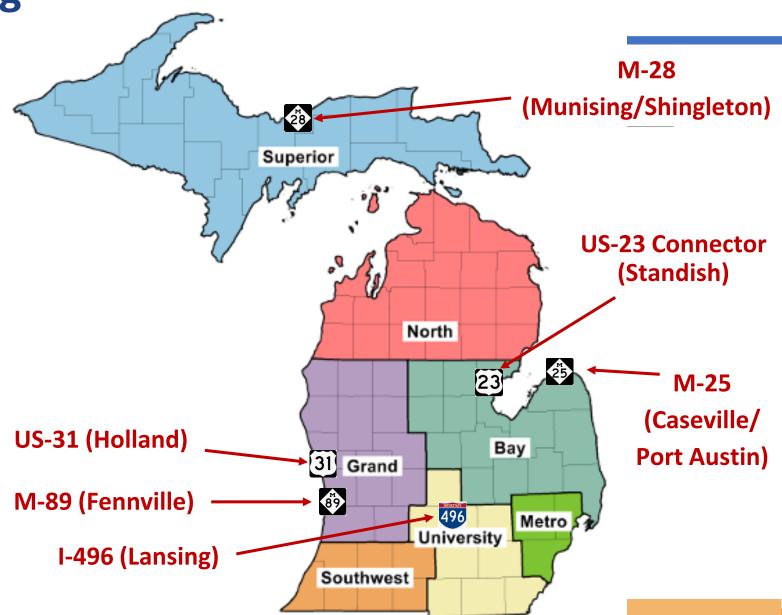
- □ A GPR antenna transmits and receives electromagnetic pulses
- □ Reflected pulses from asphalt surface is recorded (at ~ 1.5" depth)
- HMA Dielectric Constant (DC) is calculated
- HMA dielectric constant ranges from 3 to 6, depending on its components (air, asphalt binder, and aggregate)
- ✓ Binder DC ~2.6 to 2.8
- ✓ Aggregate DC ~ 4.5 to 6.5


✓ Air DC variable per compaction effort (air voids%)


DPS Technology

□ Real-time **dielectric constant (DC)** correlate to real-time **asphalt density**

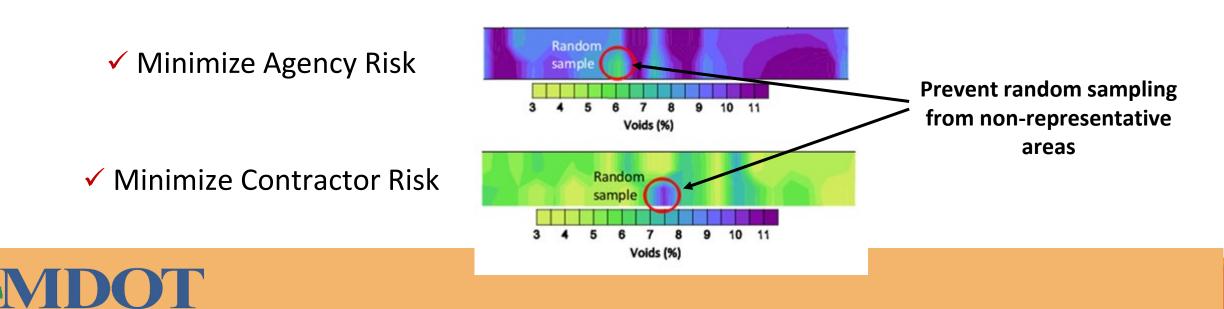
MDOT: US-31 (Holland)


MDOT's 2022 DPS Testing

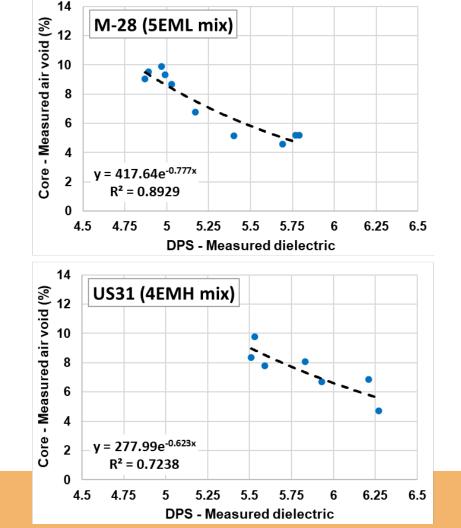
□ Six projects

- 1,000 ft of HMA surface layer
- □ Five different mix types
 - SMA, 5EMH, 5EML, 5EL, 4EMH

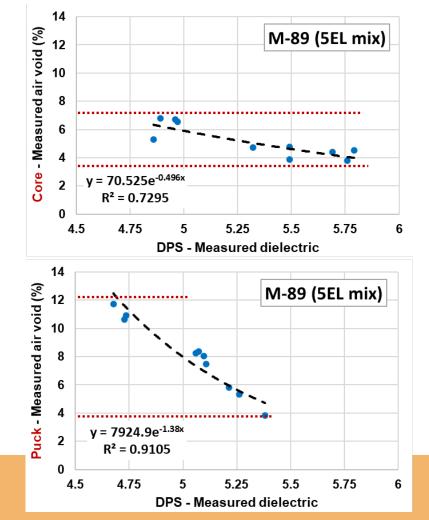
□ Three different long. joints

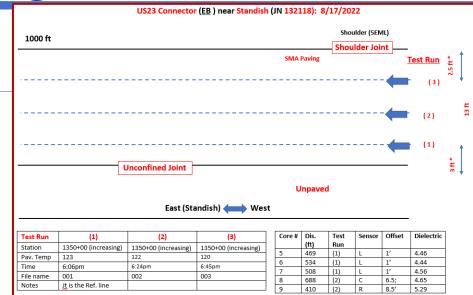

- Cold joint
- Hot joint (Echelon paving)
- Tapered joint
- **Dielectric Air Voids**
 - Correlation from field cores

DPS Benefits


A non-destructive, continuous, and efficient method to complete the QA/QC process

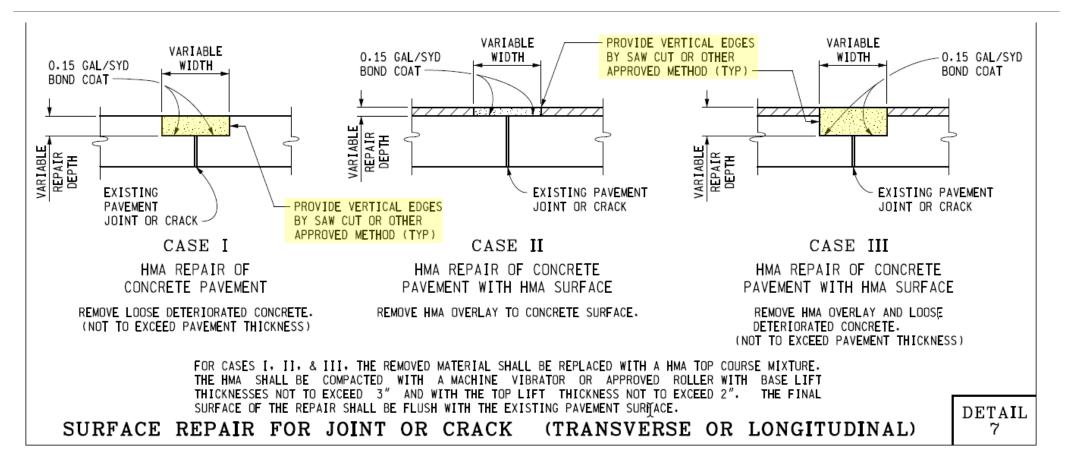
- Non-destructive: QA/QC of new pavements without coring (or reduced coring)
- Continuous: Real-time continuous assessment of relative compaction effectiveness (identify high and low compaction areas)
- Efficient: Can be operated without extensive training ~100% coverage of the constructed layers

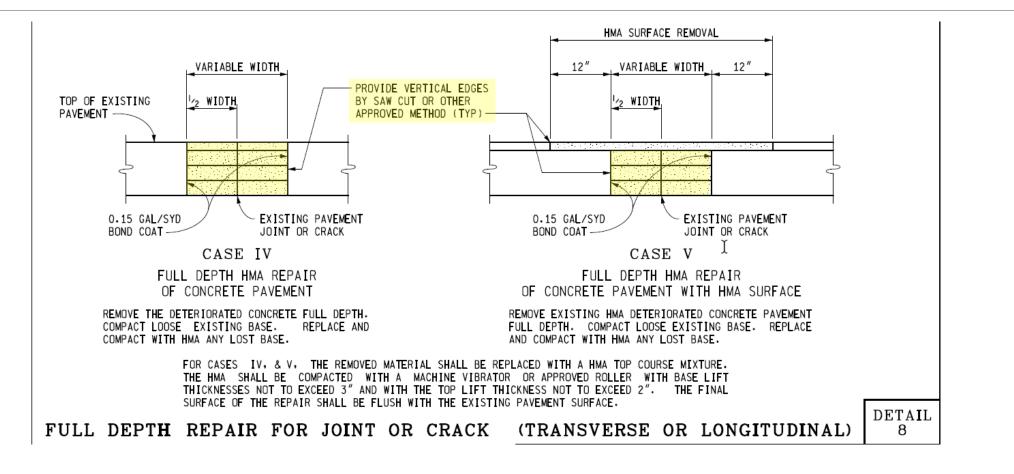

- Dielectric % void relationship is highly dependent on asphalt mix (aggregates and binder properties)
 - Any change in asphalt mix requires a unique calibration curve
 - SMA, 5EMH, 5EML, 5EL, and 4EMH were tested
- DPS suggests core locations (high, medium, and low)


- □ Lab (Puck) calibration is also possible
 - Puck samples from field loose mix
 - Turnaround time (~ 2-3 days)
- Benefits & challenges
 - Robust modeling a wide range of air void contents
 - No field cores!
 - Minimize field operations disruption
 - Is it a representative of field density?
 - Process is under development by other agencies

Lessons Learned from MDOT Field Testing

- DPS testing is a two-person operation
- Plan testing details ahead of time based on work zone set-up & time available on site (traffic closure, testing pattern, etc.)
- Quick learning curve for field testing
- Testing restrictions/limitations:
 - QC core collection needs to be delayed until DPS testing is complete – possible delays in opening the road for traffic
 - Some areas were excluded from the DPS testing due to the presence of water from coring operations
 - DPS testing speed limitations!




* From the center sensor ** Sensors # - (195) L – (207) C – (206) R

Detail 7s and 8s

Detail 7s and 8s

Bond Coat Checklist

Form 0552

Available on the MDOT website

Michigan Department of Transportation 0552 (04/20)

BOND COAT APPLICATION INSPECTOR / OPERATORS CHECKLIST

PCC

Clear Form

-:-

DOCUMENT REVIEW

- Type of bond coat (typical is SS-1H)
- Planned application rate (standard is indicated in plans)
- Materials Safety Data Sheet (on file in the Contractors' MSDS binders)
- Manufacturer's instructions

EQUIPMENT INSPECTION – DISTRIBUTOR The spray bars are at the proper height All nozzles are uniformly angled 15° to 30° from the spray bar All nozzles are free of clogs

- The spray pattern has been checked for uniformity
- Circulating bond material before spraying
- The spray pattern has been checked for proper overlap
- The application pressure has been verified
- The distributor's application calibration has been verified (ASTM D2995)
- Set application rate

Milled

PROJECT REVIEW – WHAT TYPE OF SURFACE WILL BE BOND COATED

New HMA

Is the existing surface to be bond coated non-uniform?

Existing HMA

Ves No

Coring for Thickness

Thickness cores are taken on Design-Build and Alternate Bid projects

Special Provision updated to:

- Allow density cores to be used in lieu of thickness cores
- Use Total Station Survey to determine thickness
- Revert to the original process if there is a disagreement

PWL Specification Update

Changed IPL Waiver Requirements

- Added: If an IPL was not completed for this mix design the contractor will be allowed to submit 4 consecutive QA tests, STA or PWL, from the current or prior season that meet the requirements in subsections e.3.C and e.3.D.
- Now allowed a waiver in consecutive seasons
- Deleted Section 2 requiring 2 lots to be completed

Updated section references and links

Stone Matrix Asphalt Update

2021 SMA Round Robin

Reviewed multiple state DOT specifications

Collected PWL and STA QA results from 2014 - 2021

Used the QA results to develop a new specification

□New SP will be contractor option

Stone Matrix Asphalt Update

3 Pay Factors

- Air Voids
- Volume of Effective Binder, Vbe
- Density

Overall Lot Pay Factor

- Air Voids 30%
- Vbe 30%
- Density 40%

Binder Content is a Quality Control parameter

Stone Matrix Asphalt Update

Stone Matrix Asphalt Update

Air Voids

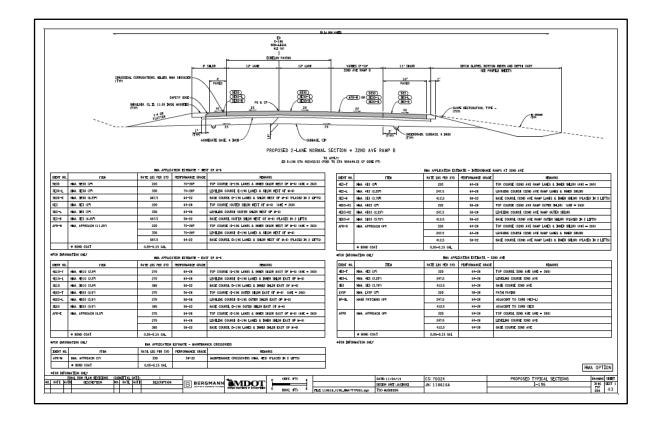
- Spec Limit +/-1.50
- RQL +/-2.00

Vbe

- Target 15.00
- Spec Limits -1.00, +1.50
- RQL -1.50, +2.00

Density

• 92.50% Minimum


Acknowledgments

- Fawaz Kaseer, P.E.
- Ethan Akerly
- Marc Beyer

New MDOT Mix Designations

- LVSP and E03 combined into EL
- E1 and E3 combined into EML
- E10 and E30 combined into EMH
- E50 eliminated and replaced with EH
- Gap Graded Superpave (GGSP) renamed to Stone Matrix Asphalt (SMA) to be consistent with national standards

- Major changes made to Tables 501-3 and 902-6
 - New Mix Design Designations
 - Changes mostly relevant to Mix Designers

• Minor changes to Tables 501-1, 501-2, 501-4 and 902-5

Table 501-3

	Existi	ing Criteria			
Superpave Gyra	tory Comp	actor (SGC) Co	mpaction Criteria		
		1	Number of Gyrations		
Estimated Traffic	Mix	%Gmm at			
(million ESAL)	Туре	(Ni)	Ni	Nd	Nm
< 0.3	LVSP	91.50%	6	45	70
< 0.3	E03	91.50%	7	50	75
< 1.0	E1	90.50%	7	76	117
< 3.0	E3	90.50%	7	86	134
< 10	E10	89.00%	8	96	152
< 30	E30	89.00%	8	109	174
<100	E50	89.00%	9	126	204

	Propo	sed Criteria			
Superpave Gyrat	ory Comp	actor (SGC) C	ompaction Criteria		
	_	1	Number of Gyrations	_	
Estimated Traffic (million ESAL)	Mix Type	%Gmm at (Ni)	Ni	Nd	Nm
≤ 0.3	EL	≤91.5%	7	50	75
>0.3 - ≤3.0	EML	<u>≤</u> 90.5%	7	75	115
>3.0 - ≤30.0	EMH	≤89.0%	8	100	160
>30.0 - ≤100	EH	≤89.0%	9	125	205

Table 902-6

						Existing Criteria								
				Suj	perpay	e Aggregate Req	uireme	ents						
		Percent Crushed Minimum Criteria		Fine Aggregate Angularity Minimum Criteria		% Sand Equivalent Minimum Criteria		Los Angeles Abraision % Loss Maximum Criteria		% Soft Particles Maximum Criteria (a)		% Flat and Elongated Particles Maximum Criteria (b)		
Estimated Traffic (million ESAL)	МіхТуре	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	
< 0.3	LVSP	55/-		Ξ.	I.	40	40	45	45	10	10	-	-	
< 0.3	E03	55/-	-	-	-	40	40	45	45	10	10	4	-	
< 1.0	E1	65/-	-	40	÷	40	40	40	45	10	10	-	-	
< 3.0	E3	75/-	50/-	43	40	40	40	35	40	5	5	10	10	
< 10	E10	85/80	60/-	45	40	45	45	35	40	5	5	10	10	
< 30	E30	95/90	85/75	45	40	45	45	35	35	3	4.5	10	10	
<100	E50	100/100	95/90	45	45	50	50	35	35	3	4.5	10	10	
				Cruz		Proposed Criteria								

				Sup	oerpav	e Aggregate Req	uireme	nts					
		Minimum Crite	eria	Angularity Mini	mum	Minimum Crite	eria	Abraision % L	OSS	Maximum Criter	ia (a)	Particles Maxir	mum
Estimated Traffic (million ESAL)		Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base
≤ 0.3	EL	55/-		-	-	40	40	45	45	10	10	-	-
≥ 0.5	EL	55/-	-	-	÷.	40	40	45	45	10	10	÷	-
>0.3 - <3.0	EML	75/-	50/-	43	40	40	40	35	40	5	5	10	10
~0.5 - ≦5.0	ENIL	75/-	50/-	43	40	40	40	35	40	5	5	10	10
>3.0 - <30.0	EMH	90/85	80/75	45	40	45	45	35	35	3	4.5	10	10
>3.0 - ≤30.0	EMH	90/85	80/75	45	40	45	45	35	35	3	4.5	10	10
>30.0 - ≤100	EH	100/100	95/90	45	45	50	50	35	35	3	4.5	10	10
(a) Soft particles m				stone, ochre, coal	, clay-	ironstone and par	rticles	that are structura	lly wee	ek or are non-dura	able in	service.	

(b) Maximum by weight with a 1 to 5 aspect ratio.

Note: "85/80" denotes that 85 percent of the coarse aggregate has one fractured face and 80 percent has at least two fractured faces.

Local Roads

						Existing Criteria	1						
				Suj	perpav	e Aggregate Req	u ireme	ents					
		Percent Crushed Minimum Criteria		Fine Aggregate Angularity Minimum Criteria		% Sand Equivalent Minimum Criteria		Los Angeles Abraision % Loss Maximum Criteria		% Soft Partic Maximum Criter	Particles Maximum		mum
Estimated Traffic (million ESAL)	MixType	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base
< 0.3	LVSP	55/-	-	-	-	40	40	45	45	10	10	-	-
< 0.3	E03	55/-	-	÷.	-	40	40	45	45	10	10	÷.	-
< 1.0	E1	65/-	-	40	-	40	40	40	45	10	10	ж.	-
< 3.0	E3	75/-	50/-	43	40	40	40	35	40	5	5	10	10

]	Proposed Criteria	ı						
				Sup	oerpav	e Aggregate Requ	uireme	ents					
		Minimum Crite	eria	Angularity Mini	mum	Minimum Crite	eria	Abraision % L	OSS	Maximum Criter	ia (a)	Particles Maxin	mum
Estimated Traffic (million ESAL)		Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base	Top & Leveling	Base
< 0.2	EL	55/-	-	-	-	40	40	45	45	10	10	-	-
≤ 0.3	EL	55/-	(-)	-	-	40	40	45	45	10	10	-	-
>0.3 - ≤3.0	>0.2 <2.0 FM	75/-	50/-	43	40	40	40	35	40	5	5	10	10
>0.3 - ≤3.0	EML	75/-	50/-	43	40	40	40	35	40	5	5	10	10

Concern over E1 moving to EML

New MDOT Mix Designations

	I	MICHIGAN DESIGN M ROAD DESIGN		
6.03.09A1d (co	ntinued)			
Hot Mix Asphalt Guidelines	(HMA) Mixture	Selection		
North, Grand, Ba	y, Southwest	and University Region		
Mixture Type	НМА М	ainline <mark>and Ramps</mark>	Hig	gh Stress HMA
EH, SMA	PG 70-28P PG 64-22	Top & Leveling Course Base Course	PG 76-28P PG 64-22	Top & Leveling Course Base Course
EML, EMH	PG 64-28 PG 58-22	Top & Leveling Course Base Course	PG 70-28P PG 58-22	Top & Leveling Course Base Course
EL	PG 58-28 PG 58-22	Top & Leveling Course Base Course	PG 64-28 PG 58-22	Top & Leveling Course Base Course
Superior Region			•	
Mixture Type	НМА М	ainline <mark> and Ramps</mark>	Hig	gh Stress HMA
EL, EML, EMH	PG 58-34 PG 58-28	Top & Leveling Course Base Course	PG 64-34P PG 58-28	Top & Leveling Course Base Course
Metro Region				
Mixture Type	НМА М	ainline <mark> and Ramps</mark>	Hig	gh Stress HMA
EH, SMA	PG 70-22P PG 64-22	Top & Leveling Course Base Course	PG 76-22P PG 64-22	Top & Leveling Course Base Course
EML, EMH	PG 64-22 PG 58-22	Top & Leveling Course Base Course	PG 70-22P PG 58-22	Top & Leveling Course Base Course
EL	PG 58-22	Top, Leveling & Base Course	PG 64-22 PG 58-22	Top & Leveling Course Base Course

- 1. For shoulders paved greater than or equal to 8 feet or in a separate operation, use PG 58-28 for top and leveling course and PG 58-22 for base course for all Regions
- 2. For Temporary Roads, commercial and private Approaches, Wedging, and Hand Patching, use PG 64-22 for all Regions except Superior and North, use PG 58-28.

APAM Mix Recommendations

APAM suggests avoiding the use of 13A/LVSP Mixes

- a. Coarse graded 13A (LVSP) mixes don't look good
 - i. Appearance is not a "specified" item, but it can become a problem when the mix "looks" bad.
 - ii. They are more susceptible to segregation, which can lead to performance issues.

APAM Mix Recommendations

APAM Suggested Top Course Mixes

Use 5E (SuperPave) Mix

The traveling public will appreciate the nice appearance and good performance.

5E Superpave Mixture

- Regress mix to 3% air voids.
- Appropriate for traffic level
- Layer thickness between 1 1/2" to 2"

Consistency is Important

In order to have better quality, more cost-effective mixes:

- a. Fewer mix designs in a plant's operating area is desirable.
 - It is not efficient for one plant to make 10 different 5E1 mixes.
- b. Avoid small quantities of a single mix.
- a. Avoid small quantities of special binders.

Less is More

- Less mix designs.
- Less yard space.
- Less variability.
- Less cost.

- More streamlined.
- More efficient.
- More consistent.
- More lane miles paved.

LESS

Chuck Mills Director of Engineering Asphalt Pavement Association of Michigan <u>cmills@apa-mi.org</u> 517-896-1468

Nate Maack HMA Operations Engineer Michigan Department of Transportation <u>maackn@michigan.gov</u> 517-256-1595

