

Current Research Update

Adam Hand, PE, PhD University of Nevada Reno

APAM Annual Conference February 21, 2023 Mount Pleasant, MI

Current Research Examples

- NCHRP Project 09-58
- NCHRP Project 09-64
- NCHRP Project 09-69
- NAPA/FAA AAPTP

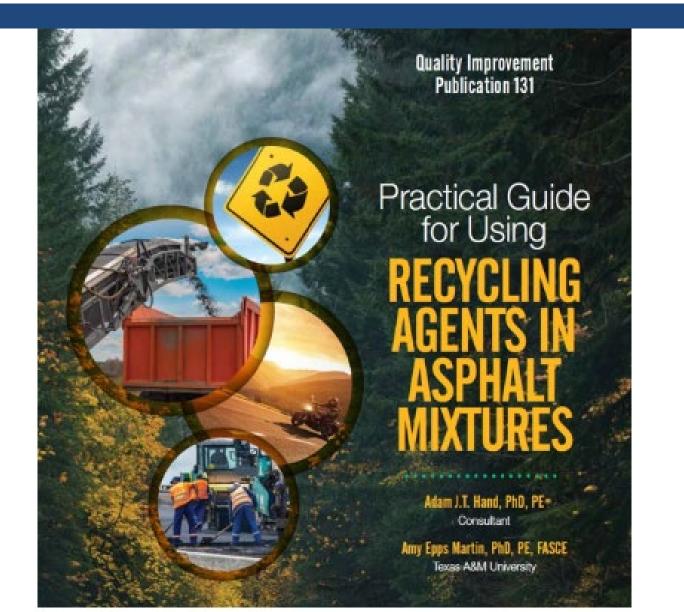
NCHRP



NATIONAL

COOPERATIN

• FHWA DDIAPT Coop


The Effects of Recycling Agents on Asphalt Mixtures with High RAS and RAP Binder Ratios

Project Data	
Funds:	\$1,500,000
Research Agency:	Texas A&M Transportation Institute
Principal Investigator:	Amy Epps Martin
Effective Date:	5/2/2014
Completion Date:	11/30/2018

 The <u>objective</u> of this research are to (1) evaluate the effectiveness of recycling agents in HMA and WMA mixtures with high RAS, RAP, or combined RAS/RAP binder ratios through a coordinated program of laboratory and field experiments; (2) propose revisions to several relevant AASHTO specifications and test methods; and (3) develop training and workshop materials and deliver one workshop

Practical Guide for Using Recycling Agents in Asphalt Mixtures

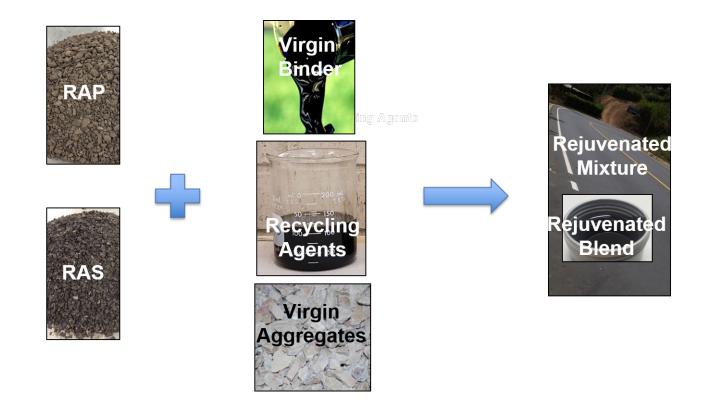
Outline

- Introduction
- Recycling Agents (RA)
- Mix Design Using Recycling Agents with Examples
- Practical Consideration when Producing & Placing Mixtures with RAs
- Other NAPA Resources
- Summary
- Q&A

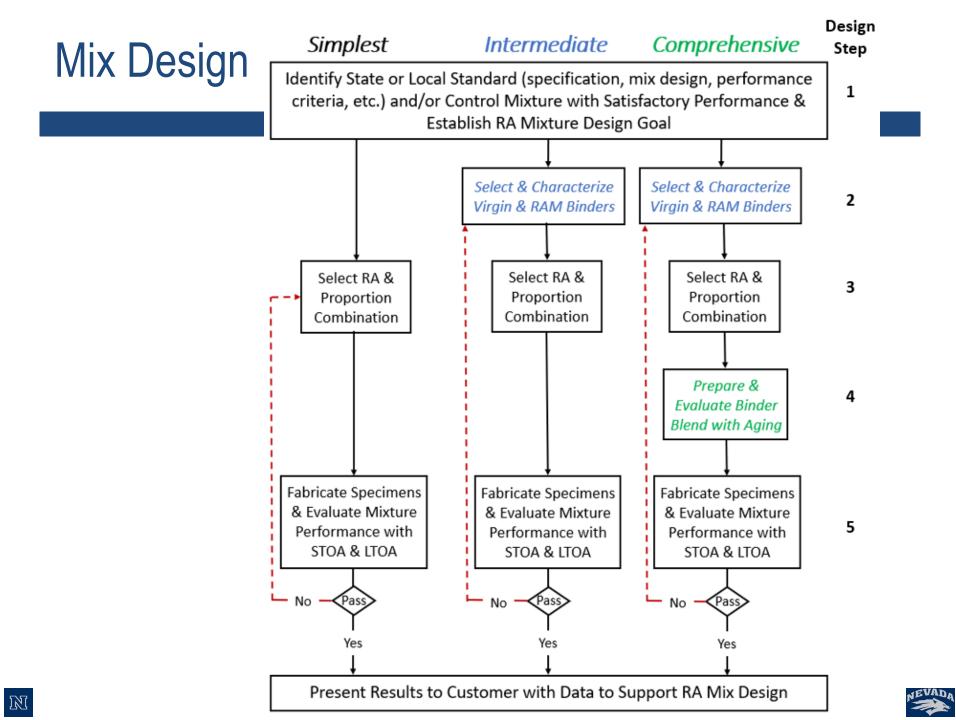
Introduction/Background

- Asphalt Industry is Sustainability Leader
 - RAP #1 Recycled Material in the U.S. (NAPA IS-138)
- Recycling & RA Focus
 - 1970's & 1980's Oil Embargoes: RAs Introduced
 - Late 2000's Binder Cost Increase: RAM use Increased
 - Early 2010's High RAM Durability Challenges & Solutions
 - Adequate and Softer PG Virgin Binders
 - Recycling Agents
- Primary RA Uses
 - Meet BMD Durability Requirements at Current RAM Level
 - Increase RAM Level, Other Benefits
- Economics of Increasing RAM <u>Very</u> Market Dependent
 - Urban vs. Rural, Specifications, S&D Commodity Prices, ...

Recycling Agents


- Terminology Can Be Confusing, RA (ASTM D4552)
 - Softeners
 - Rejuvenators
 - Not Appropriate for Bio-Based RA
- Basic Types
 - Petroleum Products, Recycled Oils
 - Bio-Based (plant, vegetable, biomass, byproducts, "green,"...)
 - Not All Equal NCHRP Project 09-58
- Import to Consider RA Stiffness, Brittleness and Compatibility
 - Several Recent & On-going Efforts to Better Classify RAs Defining Chemical, Physical and Engineering Properties
- Some Formulated to Incorporate WMA and/or Anti-Strip Benefits
- For Consistency We Used:
 - RA Doses are by Weight of Total Binder (virgin + recycled)
 - Example Calculations
 - RBR = Recycled Binder Ratio
 - Typically \leq 0.30 with RAP = X% and RAS = Y%
 - Future ≤ 0.50, 0.65, 100?

Mix Design



Tiered Mix Design Approaches

Approach	Risks & Resources			Required Testing					
	Field Performance Risk	Mix Design Risk	Time & Equipment Needs	Cost	Virgin Binder	RAP/RAS Binder	Binder Blend	Mixture Rutting	Mixture Cracking
Simplest	Mod	High	Low	Low	No	No	No	Yes	Yes
Intermediate	Mod	Mod	Mod	Mod	Yes	Yes	No	Yes	Yes
Comprehensive	Low	Low	High	High	Yes	Yes	Yes	Yes	Yes

Mix Design

- Volumetrics
 - Consider effects of absorbed binder
 - VMA = AV + $V_{be} = f(G_{sb})$
 - DP = p₂₀₀ / P_{be}
 - Reduce recycled binder availability
 - Increase effective binder
 - Increase OBC, VMA
 - Add RA
 - Specify min OBC
 - Decrease design AV
 - Reduce N

- Strategies for BMD
 - Increase RA dose or Change type
 - Select softer virgin binder or one with lower DT_{c}
 - Adjust aggregate blend
 - Modify split between RAP_{BR} and RAS_{BR} or reduce RAS_{BR}
 - Reduce overall RBR

- Additional Binder and/or Blending Tanks?
- RA can be Dosed at Plant or Terminal/Refinery
 - Flexibility to Adjust to RAM Level if at the Plant

- Clear Defensible Communication of Dose & Dose Basis is Important
- If Blended at Plant "On the Fly" then Interlocked Controls, Calibration, ...
 - Eliminates Need for Additional Asphalt Tanks
 - Small Doses: Right Sized Equipment Pump, Meter, Blending Units Important
 - Temperature Compensation for Viscosity in Cool Climates and Pre-Heats Needed?
 - Adequate Blending Prior to Introduction into Drum Necessary
 - AASHTO M156 if Agencies Don't Have 109 Procedure

- Consistent RAP and RAS Production, Handling and Management
 - NAPA QIP-129 Best Practice on RAM Production for Consistency
 - In-Bound Sorting, Crushing, Fractionation
 - Stockpiling BPs
 - Moisture Management, Paving Under, Covering
 - Depends on Geographical Location
 - BPs Vary with Precipitation Levels
 - Feeding Best Practices
 - RAM vs. Virgin Aggregate Bins

- Consistent RAP and RAS Production, Handling and Management (Cont.)
 - NAPA QIP-129 Best Practice on RAM Production for Consistency
 - Appropriate Feed Bins with Scalping Screens, Air Cannons, Vibrators, Scalping to Re-Circ Crusher & Screen
 - Multiple Bins
 - Weigh Bridges Guarded from Elements
 - RAS Feed Low Very Percentages/Mass
 - Specialty/Modified Feed Bins
 - Weigh Bridge Sensitivity

- Consistent RAP and RAS Production, Handling and Management
 - NAPA QIP-129 Best Practice on RAM Production for Consistency
- Drum and Flighting Modifications?
- High RBR Mixes:
 - Counterflow Drums
 - Drum in Drum
 - Longer Drums
 - RAM % = f(plant type)
 - Fines Management
 - External Mixing Chambers

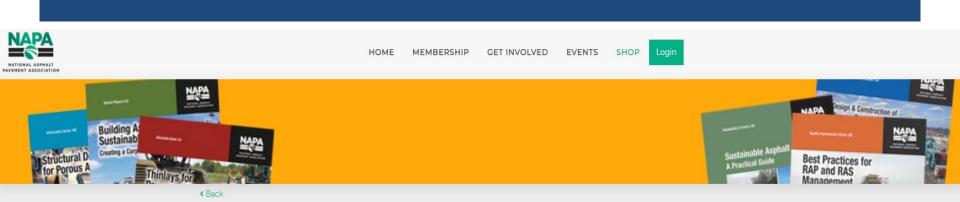
- See NAPA SR-213
- Fines Management
 - Washing Aggregates
 - Especially Crusher Fines
- Primary Collector Role
- Baghouse
 - Collected Fines
 - Metered Return
 - Ability to Waste
 - DP Specifications
 - Environmental Management

- Fewer Impacts
- Workability and Density Most Important
 - Can Be Improved with RA?
- Right Resources for the Job
- Cool Weather Paving
- WMA for Environment, Compaction, Moisture Sensitivity?
- Workability, Hand Work, Segregation & Joints Same Game

Production Considerations - EH&S

- As with <u>Any</u> Raw Material Review RA SDS
 - Equipment pH
- Bio-Based May Pose Lower Risks that Conventional RAs
- EH&S Experts Interviewed Unaware of Any Risks
- Some Comments About Aromas Worth Noting
- Human Detection Level Below Hazardous Level
 - Be a Good Industry Representation and Neighbor
 - Understand and Pro-Actively Communicate

Safe S	Supplier	AFETY DATA SHEE Asphalt Cement Bind				
Section 1. Ident	ification					
Product name	: Asphalt Cement					
Synonyms	: PG 52-28, PG 58-22, PG 64-22, PG 67-22, AC-5, AC-10, AC-20, AC-30, 150 Pen, Hard Pen asphalt					
	the substance or mixture and uses advised again:	<u>st</u>				
Product use	: Road paving					
Manufacturer	: Blacklidge Emulsions, Inc. 12251 Bernard Parkway, Suite 200 Gulfport, MS 39503 (228) 863-3878					
Emergency telephone number	: CHEMTREC - (800) 424-9300					
Section 2. Haza	rds Identification					
OSHA/HCS Status	: This chemical is considered hazardous according to the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)					
Classification	: Acute toxicity – Inhalation (Dusts/Mists)	Category 4				
	Skin corrosion/Irritation	Category 2				
	Serious eye damage/Eye irritation	Category 2A				
	Carcinogenicity	Category 2				
	Specific target organ toxicity (repeated exp	posure) Category 2				
GHS Label Elements						
Hazard pictograms	۰ 🚯 🚯					
Signal Word	: Warning					
Hazard Statements	: May be severely irritating to the skin and eyes.					
	May be irritating to the respiratory tract.					
	May be harmful if swallowed or absorbed through the skin.					
	Fumes from heated material may be irritating and hazardous.					
	May cause allergic skin reaction.					
	Overexposure may cause CNS Depression.					
	Aspiration hazard if swallowed – can enter I	ungs and cause damage.				
	Potential reproductive hazard.					
	Contains material which can cause cancer. See *Toxicological Information* (Section 11) for more information.				
Hazards Not Otherwise	: Hot liquid may cause thermal burns.					
	May release hydrogen sulfide gas.					


Summary

- RAs can be Used to Produce High RAM Mixes with Good Performance
- Key Considerations Include: Material Selection, Mix Design, Plant Production, Paving Operations, Related Investments, and EH&S
- Producers Need to Balance Rigor/Risk and Cost/Time & Equipment Needs
- Every Contractor's Situation is Unique
- Every Materials Combination is Unique
- Long-term Aged Mixture Cracking Testing is Important
- Don't Lose Sight of Sustainable Benefits for Our Industry
 - They are Significant and Important
 - They Create Value for Businesses, Individuals and the Communities We Live In!
- Promote Responsible High RAM Use and Support Use with Data
- Don't Forget Quantifying Doses and EH&S Considerations
- Demonstrate BPs for Industry and Recycling!

How to Get the Practical Guide

Badrid in growt in the second second

Practical Guide for Using Recycling Agents in Asphalt Mixtures

Man Store Adam J.T. Hand, Ph.D., P.E.; Amy Epps Martin, PhD, PE, FASCE

Government/Academia: \$0.00 Member: \$0.00 Non-Member: \$50.00 << Your price

Published: 9/15/2020

Pages: 32

This guide provides a tiered set of step-by-step approaches to facilitate the use of recycling agents in asphalt mixtures to produce pavements with good performance and promote sustainability.

Add to Cart

https://member.asphaltpavement.org/Shop/Product-Catalog/Product-Details?productid={C4B79F72-93F7-EA11-A815-000D3A4DF1CD}

Other Related NAPA Resources

- NAPA IS-138 Annual Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2021, 9th Annual Survey (2019)
- NAPA QIP-129E Best Practices for RAP and RAS Management (2015)
- NAPA IS-136E, 2nd Ed, Guidelines for the Use of Reclaimed Asphalt Shingles in Asphalt Pavements (2019)
- NAPA SR-213E Use of RAP & RAS in High Binder Replacement Asphalt Mixtures: A Synthesis (2016)
- NAPA QIP-126 Energy Conservation in Hot-Mix Asphalt Production (2007/2023)
- NAPA IS-123E Recycling Hot-Mix Asphalt Pavements (2007)
- NAPA SIP-100 Sustainable Asphalt Pavements: A Practical Guide (2019)

Developing Laboratory Methods and Specifications to Test Tack Coat Materials

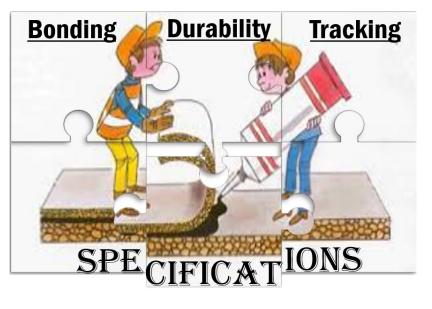
Project Data	
Funds:	\$500,000
Staff Responsibility:	Edward T. Harrigan
Research Agency:	Univeristy of NevadaReno
Principal Investigator:	Adam J.T. Hand
Effective Date:	4/15/2020
Completion Date:	10/15/2022

 The <u>objective</u> is to <u>produce a specification with related laboratory test methods for tack</u> <u>coat materials</u> that allows prediction of their performance over a range of environments, pavement types, and construction methods. The consider test methods for tack coat characteristics related to bonding, tracking, and durability. The <u>proposed specification</u> shall exclude tests of tack coat materials bonded to asphalt or other substrates.

https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4748

NCHRP Project 09-64 Motivation / Objective

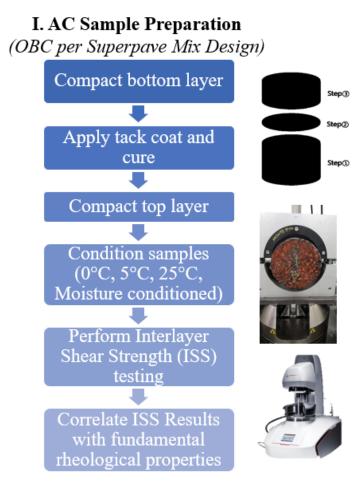
Improper selection and application of tack coat



Reduces fatigue life

Increases rutting

NCHRP 09-64 Project Objective


Shoving

Slippage

Experimental Matrix • 5 Surface Types (New AC, Milled AC, Aged AC, New PCC, Aged PCC)

• 14 Tack Coat Materials (including emulsions and hot applied binders)

• **4 Asphalt Binders in the Mixture** (PG 64-22(1), PG64-22(2), PG 58-28, and PG64-28NV)

• 3 Application Rate Levels (Low, Medium, and High)

• 2 Mixture Types (¹/₂ NMAS and ³/₄ NMAS mixtures)

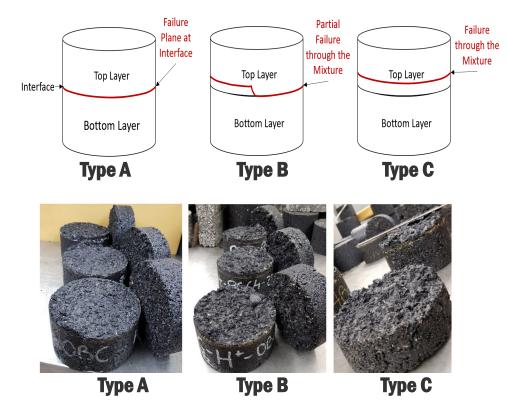
II. Large Scale AC over PCC Slabs (using UNR PAVEBOX)

• SS1(1) In-spec • SS1(2) In-spec • SS1(OS) Off-spec • SS1h(1) In-spec • SS1h(2) In-spec • SS1h(OS) Off-spec • HP NT(1) In-spec • HP NT(2) In-spec • HP NT(OS) Off-spec • PM NT In-spec • HPM In-spec • PG 67-22 In-spec • HP NT-HA In-spec •PG 64-28 NV

Tack Coat Materials

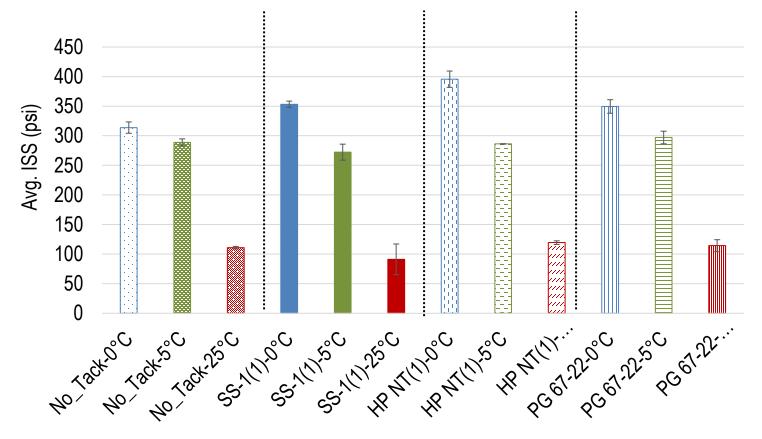
Binders Used in the Mixture

- PG 64-22(1)
- PG 64-22(2) • PG 58-28
- Residue Recovered using:
 Distillation Recovery Method
 LTE Recovery Method
 Vacuum Recovery
 - Method


Residue/Binder Performance Tests

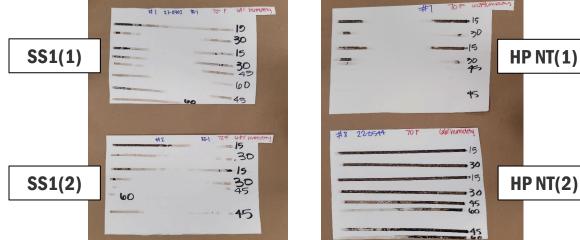
- Performance Grading
- Multiple Stress Creep & Recovery (MSCR)
- Crossover Temperature
- Viscosity
- Penetration
- Softening point
- Tackiness Test
- 4 mm DSR on original and RTFO aged residue/binder materials

ISS Bond Strength


- No Tack Coat vs. 13 Tack Coats
- Failure Mechanism
 - -Interface
 - -Through Mixture
- PGHT_{Tack Coat} ≥ PGHT_{Binder in the Mix} to improve interlayer shear strength

ISS Bond Strength

- 25, 5 & 0°C
- Moisture Conditioning (T283 F/T)



Tracking Tests

- AASHTO DSR: G*, G*/sin δ, Crossover Temperature, ...
- ASTM DSR: Tracking Temperature
- BASF Modified ASTM Paint/Coatings Test

Outcomes

- Specification (AASHTO Format)
 - Bond Strength: Tack Coat PGHT
 - Tracking: Crossover Temperature > Onset of Tracking Temperature
 - Durability: Aging Index
 - Emulsion Residue: Distillation Method
- National Transportation Product Evaluation Plan (NTPEP) Workplan
 - Defines the evaluation procedures for Asphalt Tack Coats
 - Laboratory testing to determine properties of Asphalt Tack Coats
- Field Validation Work Plan

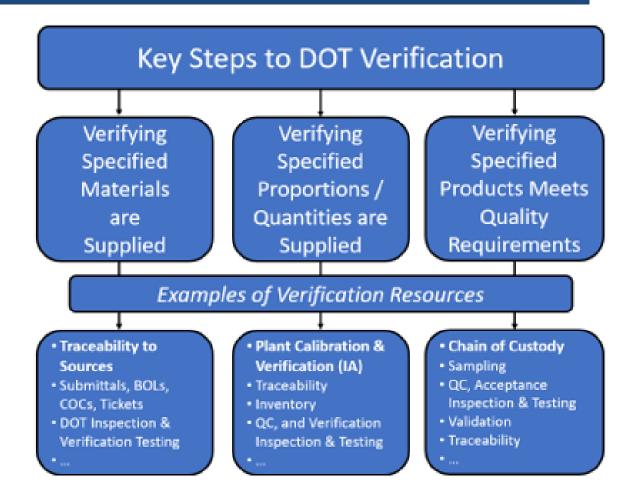
N

- Field Experiment Projects
- Tack Coat Material Specification and Test Method
- Tack Coat Construction Specifications
- Pavement Bond Strength Sampling and Testing
- Documentation, Communications and Reporting

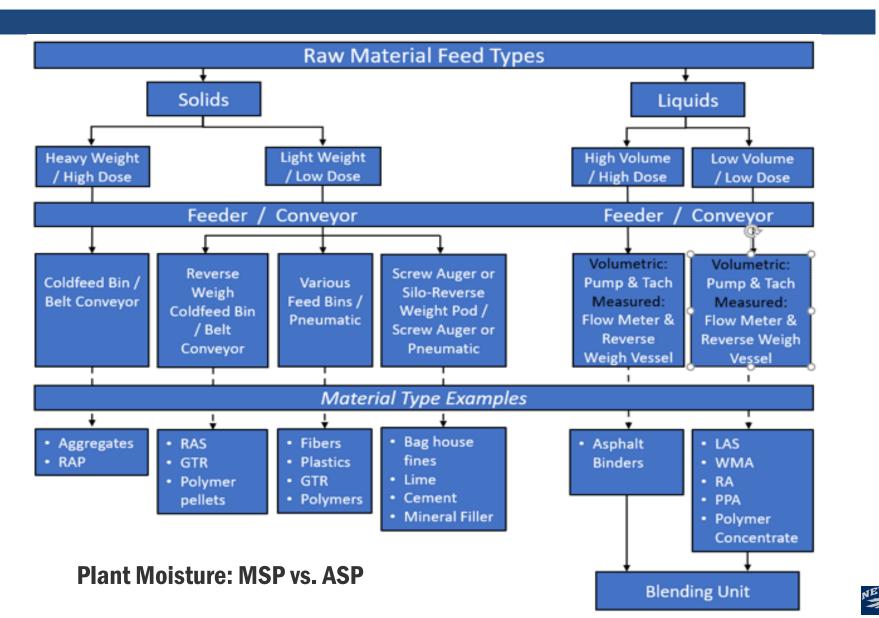
Verifying Quantities of Materials Used in Asphalt Mixtures at Production Facilities

Project Data	
Funds:	\$350,000
Staff Responsibility:	Amir N. Hanna
Research Agency:	University of Nevada, Reno
Principal Investigator:	Adam J. T. Hand
Effective Date:	6/28/2022
Completion Date:	10/28/2024

 The objectives of this research are to (1) <u>recommend procedures for verifying</u> <u>quantities</u> of materials used in asphalt mixtures at production facilities and (2) prepare <u>guidelines for their application</u>.



https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=5142

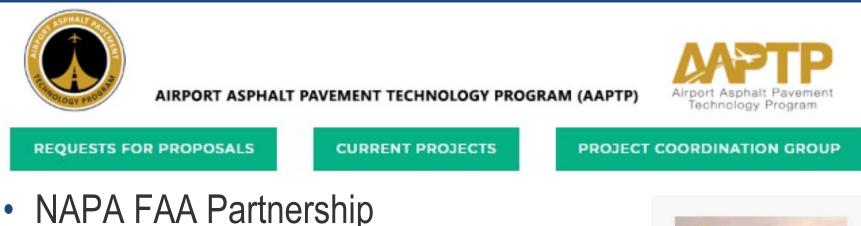


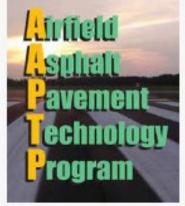
- Example Entities
 - Georgia DOT
 - Illinois DOT
 - Maine DOT
 - Oregon DOT
 - Texas DOT
 - Utah DOT

-FAA & USACOE

N

- Early in Project
- Summer 2023
 - Procedures: Weight Basis
 - Apply at Hot Plants




NAPA/FAA AAPTP Coop

- Management / Benefits
- 9 On-going Projects
- \$3M more Appropriated
- ? Future Projects
- Research Panel Participants

https://www.asphaltpavement.org/expertise/engineering/airports/current-projects

AAPTP On-Going Projects

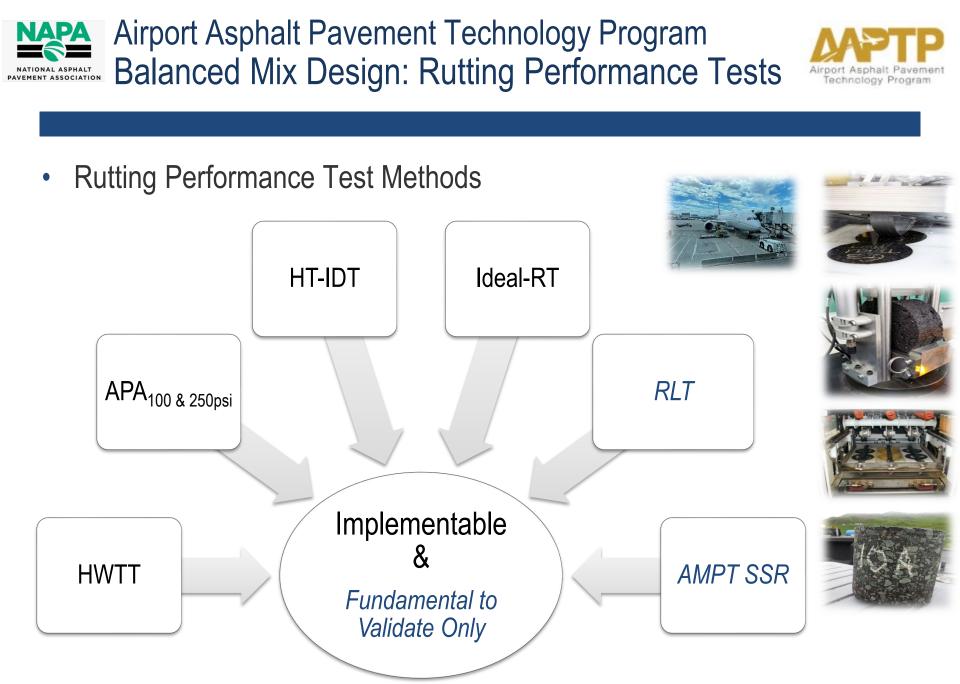
- 1. Guidance on Selection of Asphalt Binder Grades
- 2. Asphalt Mixtures Paving Handbook Revision
- 3. BMD Evaluation of Cracking Tests for Airfields
- 4. BMD Evaluation of Rutting Tests for Airfields
- Improving Performance of Longitudinal Joints in Airfield Pavements

- 6. Mitigation of Plastic Flow & Delamination at High-Speed Exits
- Feasibility of Cold Central Plant Recycling (CCPR) Asphalt Mixtures for Airports
- Validation of Gyration Level for Superpave Gyratory Compactor (SGC) for Mix Design and Control of Airport Asphalt Mixtures
- 9. P-401 Mixtures: Aggregate Gradation Bands

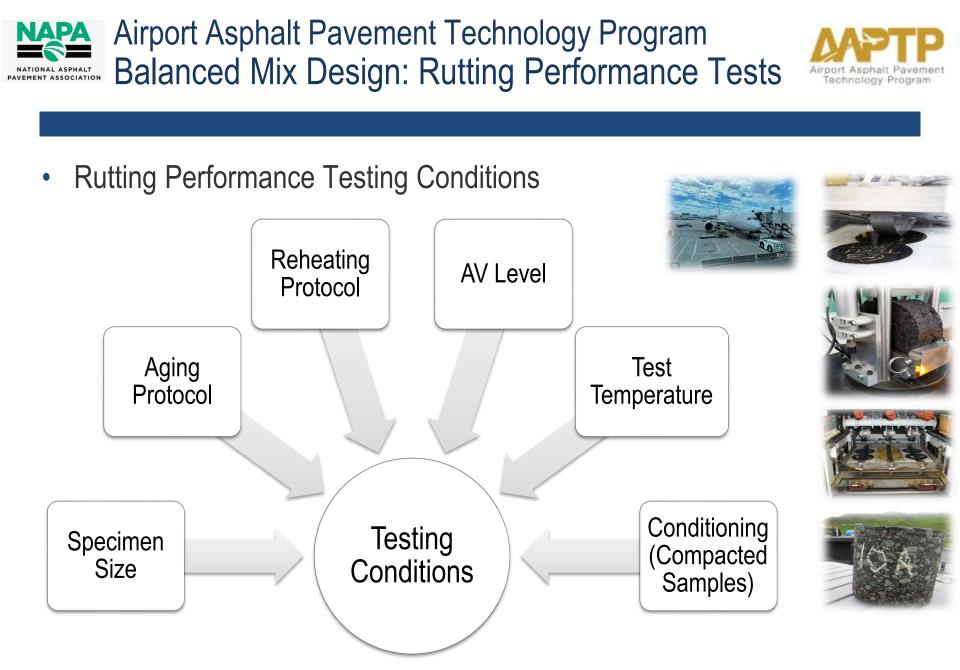
AAPTP On-Going Projects

- 1. Guidance on Selection of Asphalt Binder Grades
- 2. Asphalt Mixtures Paving Handbook Revision
- 3. BMD Evaluation of Cracking Tests for Airfields
- 4. BMD Evaluation of Rutting Tests for Airfields
- Improving Performance of Longitudinal Joints in Airfield Pavements

- 6. Mitigation of Plastic Flow & Delamination at High-Speed Exits
- 7. Feasibility of Cold Central Plant Recycling (CCPR) Asphalt Mixtures for Airports
- 8. Validation of Gyration Level for Superpave Gyratory Compactor (SGC) for Mix Design and Control of Airport Asphalt Mixtures
- 9. P-401 Mixtures: Aggregate Gradation Bands



- **Objectives:** Develop new FAA specs for using rutting tests as part of the new mix design process for airfield asphalt mixtures, based on the Balanced Mix Design methodology
 - Proper selection of rutting tests & associated test criteria
 - Use at the mix design phase & during production



- Collaborating with BMD Cracking Test Research Team
 - Project Sampling, Protocols, ...

Validation of Gyration Level for SGC for Mix Design and Control of Airport Asphalt Mixtures

• **Objective:** Determine the numbers of gyrations with an SGC to achieve mixture volumetric properties equivalent to those using 50- and 75- blows with a Marshall hammer

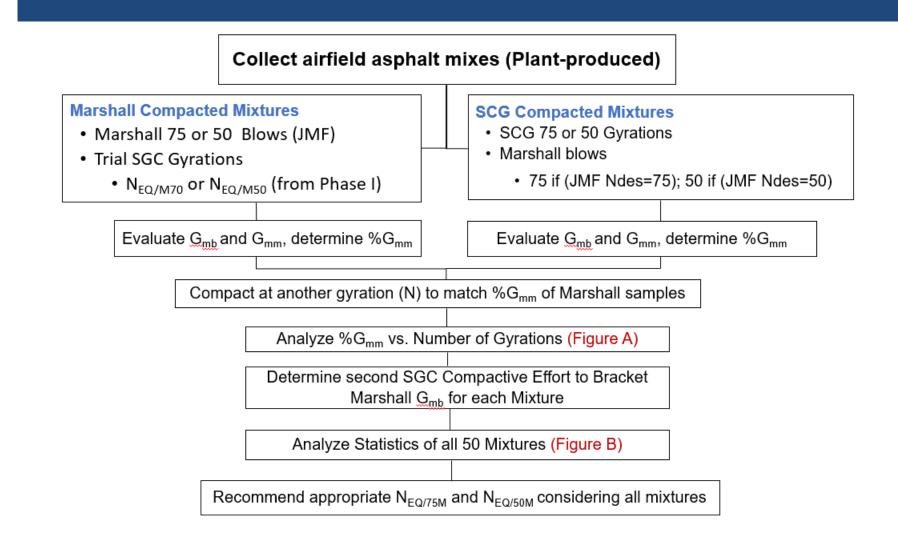
- Collaborating with BMD Rutting Project Research Team

- Project Sampling, Protocols, ...

at AUBURN UNIVERSITY

Aircraft <60,000 lbs. & >60,000 lbs.

MTOW = Maximum Take-off Weight


- FAA specifications (P401 and P403) allow the engineer to select compaction by either Marshall hammer or SGC
 - -75 blows or gyrations for aircraft weight >60,000 lbs
 - -50 blows or gyrations for aircraft weight <60,000 lbs
- Marshall hammer compaction used successfully for many decades prior to SGC, but SGC is now method of choice. Sometimes difficult to find labs with Marshall equipment.
- Concern remains that specimen densities from Marshall and SGC compaction are not equivalent, and the differences result in airfield asphalt mixtures with different in-service performance

Experimental Plan

• Each mixture analyzed to find equivalent gyrations that provide same %G_{mm} (volumetrics) as the corresponding Marshall compaction (Figure A).

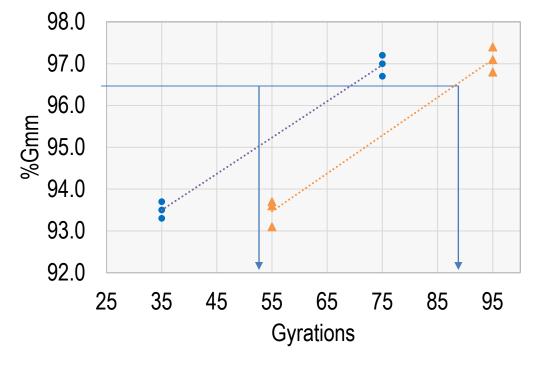


Figure A. Analysis of $%G_{mm}$ vs. gyrations

 N_{EQ} results for all mixtures plotted on a cumulative distribution function to analyze statistics to aid in recommending the N_{EQ} (Figure B).

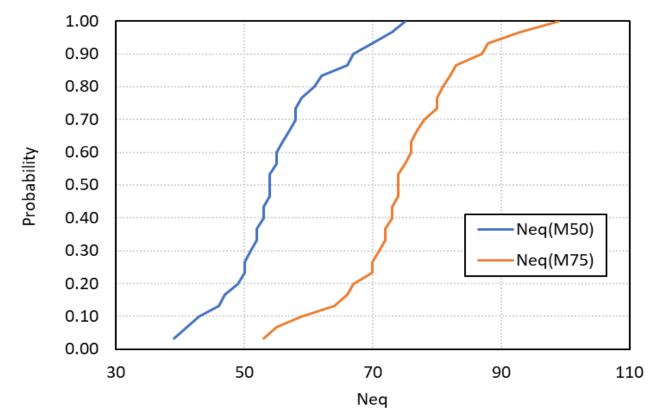
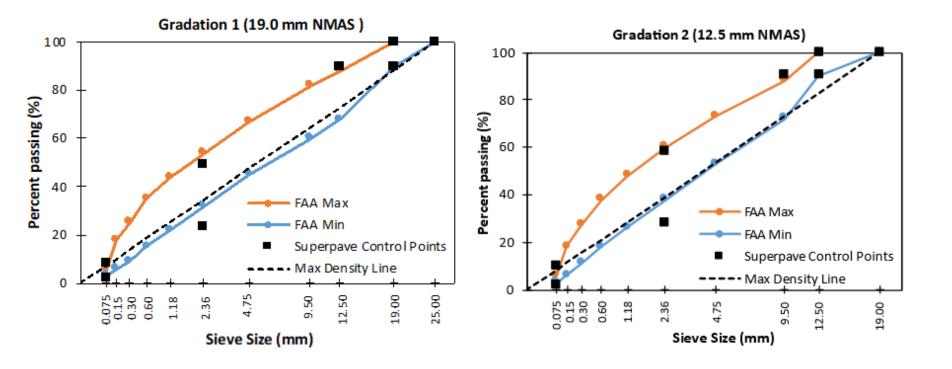
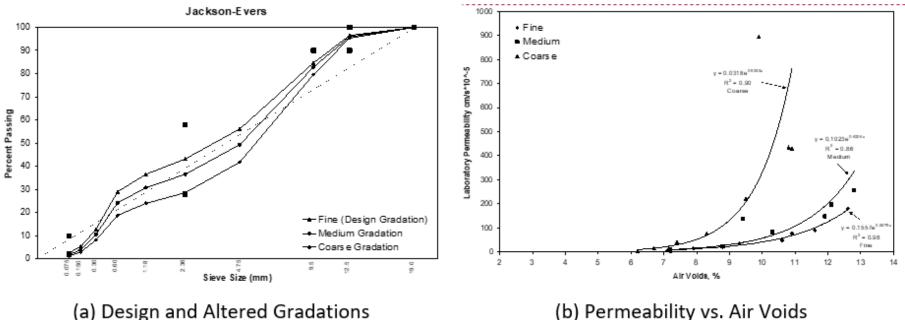


Figure B. Example Cumulative Distribution Functions for N_{EQ} Considering All Tested Mixtures

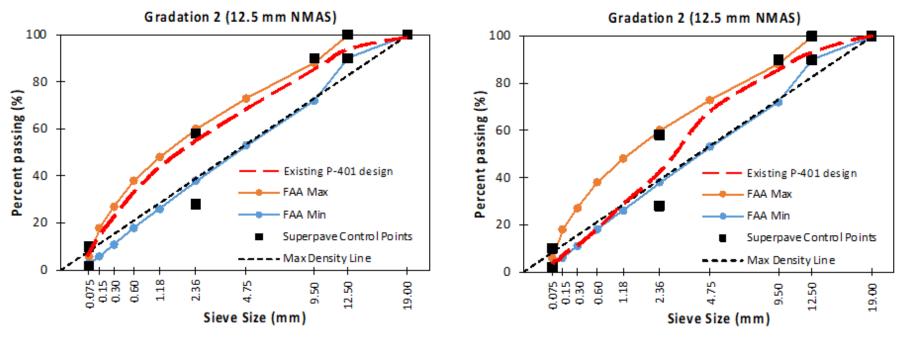
P-401 Mixtures: Aggregate Gradation Bands

Objective: The outcome of this project will be to ensure that the FAA has **recommended** gradation band requirements based on how mixture gradation is related to lab mix performance. The recommended gradation band requirements should be the least restrictive allowable while maintaining the performance expectation for P-401 specified FAA mixtures. The recommended gradation band adjustments are not expected to impact other P-401 mixture property requirements. The research findings may include necessary adjustments to mix property requirements beyond gradation provided those adjustments will not negatively impact asphalt mixture performance. The recommended gradation band requirements should focus on critical sieves and provide ranges that allow mix designers to use the most cost effective and environmentally friendly resources possible without pavement quality concerns related to mixture gradation. The project will develop resources for mix designers to evaluate mixture gradation and the impacts on mixture performance within the recommended gradation bands. A process and procedure that ensures asphalt mixture performance, but allows for modification of aggregate gradation requirements on a regional basis will be included with the new gradation band requirements




Current FAA Gradation Specifications

FAA Historic Durability Concerns


- Design %AV = 3.5% vs. 4.0%
- VMA = M323 +1.0%
- Gradation Bands = Reduce Permeability

Example FAA Gradations (1/2" NMAS)

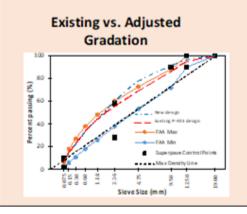
(a) Design Gradation Close to Upper Limits

(b) S-Curve Design Gradation Changing from Upper Limits (Coarse) to Lower Limits (Fine)

Work Plan

P-401 Mix Design	New Mix Design		If perfo	If performance test results are		
(currently meeting	(gradation dev	iating outside P-401	equal or	meet specified criteria,		
FAA performance	bands whil	e still meeting all	gradation	of new mix design can b	e	
expectation)	volumetri	c requirements)	used to	adjust gradation limits		
Mixture Performance	Mixture Test	Aging Condition	Test Parameters	Test Standard		
	APA	P-401	Put donth	AASHTO T 340 at 250		
Putting	APA	requirement or	Rut depth	psi hose pressure		
Rutting	HWTT	used in AAPTP	Rut depth	AASHTO T 324		
		BMD Rutting Test	Kut deptil			
Moisture	TSR	P-401	TSR	AASHTO T283		
Susceptibility	151	Requirement	151	AA3110 1203		
Top-down	I-FIT	Collowing the	FI	AASHTO T 393		
Cracking	IDEAL-CT	Following the procedure used		ASTM D8225		
Low-temperature	DCT	in AAPTP BMD	Fracture Energy	ASTM D7313		
Cracking	DCT		(G _f)	ASTIVI D7515		
Durability	<u>Cantabro</u>	Cracking Test	Mass loss	AASHTO T401		
Permeability	Florida	Short-term Aging	Permeability	FM 5-565		
renneability	Permeability Test	Short-term Aging	coefficient (k)			

1. Input Existing Mix Design Information


Asphalt binder

Aggregate

- Gradation
- Consensus properties
- Source properties
- Mixture type
- Compaction method & effort
- NMAS
- Gradation type
- Volumetric properties
- Binder content
- Air voids
- VMA, VFA & D/P
- Performance test results
- APA or HWTT
- TSR
- Cracking test(s)
- Permeability test

2. Adjust Aggregate Gradation

Agg.	Existing Design	Adjusted Design	
#1	X1%	Y ₁ %	
#2	X ₂ %	Y ₂ %	
	X₃%	Y₃%	
New	X ₄ %	Y ₄ %	

3. Estimate Changes in Volumetric Properties

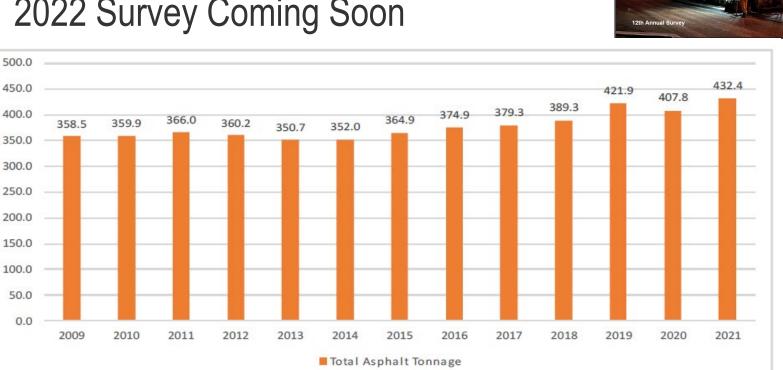
Binder content
 Air voids

VFA

D/P

4. Estimate Changes in Performance Properties

- Rutting resistance
- Cracking resistance
- Moisture susceptiblity
- Permeability


Reminder

Asphalt Pavement Industry Survey on **Recycled Materials and** Warm-Mix Asphalt Usage 2021 Information Series 138

NAPA IS-138 Publication

- 2021 Just Published
- 2022 Survey Coming Soon

https://www.asphaltpavement.org/expertise/sustainability/sustainabilityresources/recycling

Q&A

ΔΡΔΙΛ

FEB 21-22

2023

Adam Hand University of Nevada, Reno Email: adamhand@unr.edu Phone: (775) 742-6540

CATERPILLAR