

Presenter

- Kevin Ackley
- Sitech Michigan

Why use 3D Milling and 3D Paving?

To build better pavement Structures!!!

Sample Engineering Specifications

2D and 3D Milling-Paving Terminology

- 2D Milling-Paving guidance to grade [elevation-thickness] and/or slope
 - 2D is Ground-up
 - 2D Systems typically place a constant thickness over the base
- 3D Milling-Paving guidance to grade and slope at a known position using a design/model
 - 3D is <u>Design-down</u> and does not use the existing surface for guidance

"Traditional" 2D Milling Method: Non-Graded Surfaces

3D Milling Method: Graded Surfaces

Why 3D Mill?

- Increased production, lower cost
 - Only mill where needed
- Increased smoothness
 - Remove longitudinal waves
- Decreased asphalt usage
 - No need to fill in low spots [leveling course]
- Change/Fix Cross-Slopes
 - New State/Federal Specs
- Mill complex designs
 - Transitions, supers, drainage, etc.
- No Stringline or wire required
 - Reduce costs
 - Better truck/traffic management
 - Safer

Why 3D Mill? - Con't

- Variable depth and slope milling:
 - Remove more or less material as per project specifications
 - Provides uniform surface for pavement

Guide Policy for Geometric Design of Freeways and Expressways - NAASRA 1976

\equiv

Other Advantages of 3D Milling

Increased Smoothness

The issue of differential compaction when paving:

3D milling takes away the issue:

Other Advantages of 3D Milling – Con't

Decreased asphalt usage

3D Milling minimizes asphalt usage

Results of better Pavement Structures using 3D

- Smoother
 - Easier to control vehicles at higher speeds
 - Less impact, especially with heavier loads
- Safer
 - Better drainage, reduce ponding/hydroplaning
 - Better traffic control
 - Quebec Ministry of Transportation increased off-ramp +10km/h [+6mph]
- Longer lasting
 - Lower maintenance costs
 - Better snow removal hence
 - reducing additional wear
 - premature failures from undulating surfaces
- Taxpayers enjoy driving on smooth roads ©

PCS900 On -Machine Components

Control System Overview

PCS900

- 3D Position Sensor
- Relative to design
- <u>Top Down</u>

Up/Down
Left/Right
Corrections

Contact Sensors

Sonic Sensors

Wire Rope Sensors

- 2D Position only
- Ground up

2D OEM Control System

Machine Hydraulics [Leg Control]

2D System Compatibility

- Wirtgen LevelPro
 - DLS-1 v6.072 or v6.074
- **MOBAmatic**
 - CAN / PWM
- **ROADTEC ACE Grade and** Slope
- CAT Grade and Slope

Trimble PCS900 3D Mills – In the Field

- Achieve the highest accuracy and smoothness levels
 - Better material management
 - Better material yields
- Eliminate the stringlines:
 - Reduce staking labor, downtime and errors
 - Reduce costly rework
 - Finish the project faster
- Pave variable depth and slope including complex designs
- Use an "Uncompacted Design" to help differential compaction issues
 - For most applications, includes "levelling course" in the same pass

PCS900 3D Paving Applications

- Any project where a contractor uses Stringline, wire or "grade marks" for elevation grade
- Variable depth and slope paving applications
 - Roadways, Airports and commercial surfaces
 - Base material [P209, gravel, etc...]
 - Asphalt
 - Roller Compacted Concrete [RCC]
 - Concrete Treated Base [CTB]

PCS900 3D Paving – UTS Tracking [typ for Corridors]

PCS900 3D Paving – Managing Differential Compaction

- 3D Designs describe the final finished surface
- 3D AMG systems use vertical offsets to build up to this surface
- Final asphalt lift is designed to finish at this design surface
- If existing paving surface is not to grade or not level, low areas will compact more
 - Paved surface will have longitudinal waves affecting smoothness
- Traditional practices are to place multiple lifts hoping the waves are reduces and/or eliminated by final lift
 - ~60% to +80% of waves reduced per lift

- PCS900 can help manage differential compaction
 - Using a PCS Uncompacted Design
- PCS Uncompacted Designs require 3 key components:
 - Existing Surface
 - Design Surface [e.g.: first lift of compacted asphalt]
 - Compaction Factor
 - E.g.: 2" compacted, placed at 2.5"
 - Compaction Factor = 2/2.5 = 0.80
- 3D Paving goal is to place "levelling course" at the same time as design grade
 - Compacted material is placed at grade

Using an Uncompacted Design

Original surface with longitudinal road waves

New road design with compaction factor [e.g. 0.80]

3D paved surface before compaction

3D paved surface after compaction

Paving & Rolling on a smooth or 3D AMG graded surface

This surface represents long longitudinal roadwaves This is N.T.S and is extremely exaggerated

If you lay a thicker lift you get more compaction

This surface represents long longitudinal roadwaves This is N.T.S and is extremely exaggerated

- Place the asphalt to the "Uncompacted" Design
 - A little thicker over the low areas

- Rolling will leave a smooth level surface
- Consider using a 3D mill prior to paving!!!

Dual Mast Setup

- Allows measure-up of left and right masts
 - Still only using <u>one side</u> for machine guidance
 - Makes switching over from one side to another fast
 - Same feature that exists on Mills

Control System Overview

PCS900

- 3D Position Sensor
- Relative to design
- <u>Top Down</u>

Up/Down
Left/Right
Corrections

Contact Sensors

Sonic Sensors

Averaging Beams

- 2D Position only
- Ground up

2D OEM Control System

Machine Hydraulics [Screed Control]

2D System Compatibility

- Trimble PCS400 2D
 - V1.22
- **MOBAmatic**
 - CAN / PWM
- Vogele NiveltronicPlus3D Interface
- CAT Grade and Slope

Trimble PCS900 3D Pavers – In the Field

Design Support

- Supports SVL / SVD
- Supports alignments,
 - Not required

UTS – Transition Strategy

- Elevation/Horizontal differences are absorbed
- No movement during transition; no "bump"

Key Ingredients for a Successful 3D AutomatedMachine Guidance [AMG] Project

- Consult with a qualified manufacturer and supplier prior to the project
- Training and Support from a qualified distributor
 - Plan and prepare for training prior to production on the project
- Contractor is committed in using technology
 - Should have a person on staff to be responsible
 - Product Solutions Investment and an Investment to change how you work
- Contractor follows all machine manufacturer recommendations for operating the machines equipped with Machine Guidance
 - E.g.: Paving By The Numbers, etc... for pavers
 - There is no "magic" button when technology is install, you still need to know how to pave

- Use the correct technology for the project application [s]
 - Is there line of sight for the total stations?
 - Are there any obstructions?
 - High walls? Overpasses? Bridges? Trees? Buildings? Tunnels?

TRANSFORMING THE WAY THE WORLD WORKS

- Use the correct technology for the project accuracy requirements
- How does the 3D technology work with the existing milling or paving 2D technology?
- Machine is in optimum working condition
 - Any wear or "slack" on the machine will affect results
- Consider other machines for machine guidance and not limit to just one. Look at the whole spread.
 - One machine is productive, multiple machines are MORE productive!

- All Instruments need to be checked, cleaned, adjusted, updated with a <u>Certified Service Center</u>
- All Technology [e.g.: Instruments, Sensors, etc...] on the project need to be field calibrated as per the <u>manufacturer's recommendations</u>
- Always <u>check and double check</u> equipment and technology on the project

- Project <u>Survey Control Points</u> must be accurate
- Must be less than ½ the project specifications
 - Example: Project Spec of ½" [0.012m], Survey Control less than ¼" [0.006m], etc...
 - Contractors may chose to be more accurate than project spec to help manage material yields
- Use a <u>Digital Level</u> system to reduce or eliminate human errors!
- If you are 3D milling or 3D paving, mm accuracy is a must
 - There is no reason or excuse for poor survey control accuracy
- Should be no more than 500' [150m] apart for Total Station Machine Guidance
 - You need to know the technology ranges and/or limitations
- Surround the project

- Use Digital Level [Vertical]
- Total Station [Horizontal]

- Must be Accurate
- Built for Machine Guidance applications
- If building a road/corridor, runway/taxiways, use the design as it was built
 - HAL, VAL, X-Section Templates, Stationing, Superelevations & Widening, etc...
- Build the design as the project will be constructed
 - Subgrade, Finish Grade, etc...

Optimized and densified for Machine Guidance

- Must meet or exceed IRI/Smoothness Spec!
 - Check design in BC-HCE/ProVal prior to sending to machine
- If the design is wrong the surface is wrong
 - If you are milling or paving, this is your last chance to get it right!

- As-built or existing surface data accuracy should be equal or better than the technology being used
 - If the AMG technology can achieve 3mm to 5mm [0.01' to 0.02'], as-built data accurate at 10mm to +20mm [0.03' to +0.07'] is not ideal
 - The data can be used for a 3D design and/or to verify was has been milled or placed

Notable/Award Winning Projects

- Telluride CO Airport Project with Kiewit
- New St-George UT Airport Project with Western Rock [Staker Parson/Oldcastle Group]
 - https://www.youtube.com/watch?v=35uxS4BE4ag
- Provo River Constructors [PRC] I-15 Project in Provo UT
- Port Mann-Hwy 1 Project in Vancouver BC with Kiewit
- Circuit Of The Americas [COTA] F1 Track in Austin TX with Austin Bridge & Road
 - https://www.youtube.com/watch?v=ygC-vbVv7oc
- Western Wake Expressway Raleigh NC with Lane
- Colorado Springs CO Peterson AFB Runway Project with Kiewit
- Honolulu HI Reef Runway Project with JAS W Glover
 - https://www.youtube.com/watch?v=DKKjUXrIQLU
- Bowling Green KY National Corvette Museum Motorsports Park [Corvette Test Track] with Scotty's Contracting
 - https://www.youtube.com/watch?v=napiTkJT2os
- Quebec Ministry of Transportation
- Bogota El Dorado International Airport
- US Bank Vikings Stadium in Minneapolis MN with Park Construction
 - https://www.youtube.com/watch?v=UUbKFCW2-NY
- Numerous FHWA/State DOT Intelligent Compaction Projects

