ASPIALITE THE SMOOTH QUIET RIDE

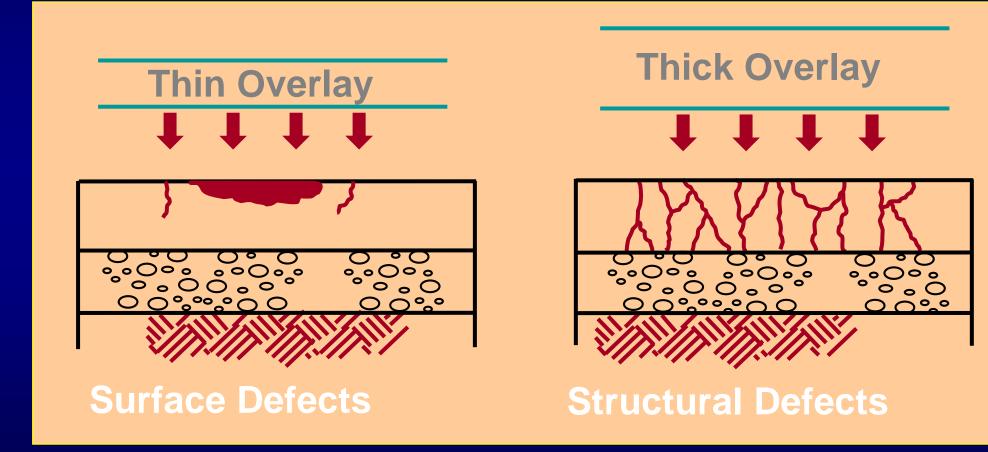
2016 Local Roads Workshop

Pavement Maintenance

Maintaining your roads with Asphalt

Maintaining your roads with Asphalt

- Asphalt Overlays
- Asphalt for Preventive Maintenance


Asphalt Overlays

- Functional overlays
 - Typically used to address surface distresses or improve ride quality
 - Generally not designed and rely on past experience
- Structural overlays
 - Correct structural deficiencies and are designed

Asphalt Overlays

Functional Overlays

- Remedy functional deficiencies
- Minimum constructible thickness
- May involve surface milling and repair with overlay

Functional Deficiencies

- Adversely affect highway user
 - Poor surface friction
 - Hydro-planing
 - Surface distortion
 - Minor Rutting
 - Raveling
 - Surface Cracking
 - Surface Irregularities

Surface Roughness

Irregularities in the pavement surface that adversely affect ride quality, safety, and vehicle maintenance costs

- HMA Pavements
 - Heaves, settlements
 - Deteriorated cracks
 - Deterioration
 - Raveling

- PCC Pavements
 - Heaves, settlements
 - Spalling
 - Faulting
 - Curling/warping
 - Texture application

Options for Correcting Functional Deficiencies

- Thin overlay
- Milling plus thin overlay
- Full-depth or partial-depth repairs with thin overlay

Structural Overlays

- Remedy structural deficiencies
- Minimum design thickness
- May involve surface milling and repair with overlay

Structural Deficiencies

- Adversely affect the loadcarrying capability of the pavement
- Indicators
 - Cracking
 - Distortion (rutting)
 - Disintegration

Options for Correcting Structural Deficiencies

- Structural overlay
- Pre overlay repair and structural overlay
- Rehabilitation and structural overlay
- Reconstruction

Pre - overlay Repairs

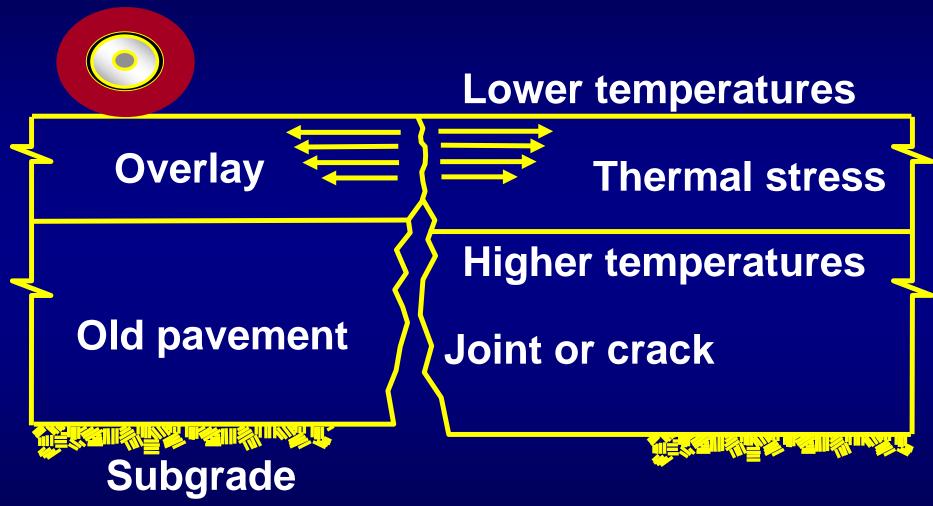
- Amount and type depends on
 - Type of overlay
 - Structural adequacy
 - Distress types and severity
 - Future traffic loadings
 - Physical constraints
 - Overall project funding

Pre - overlay Repairs

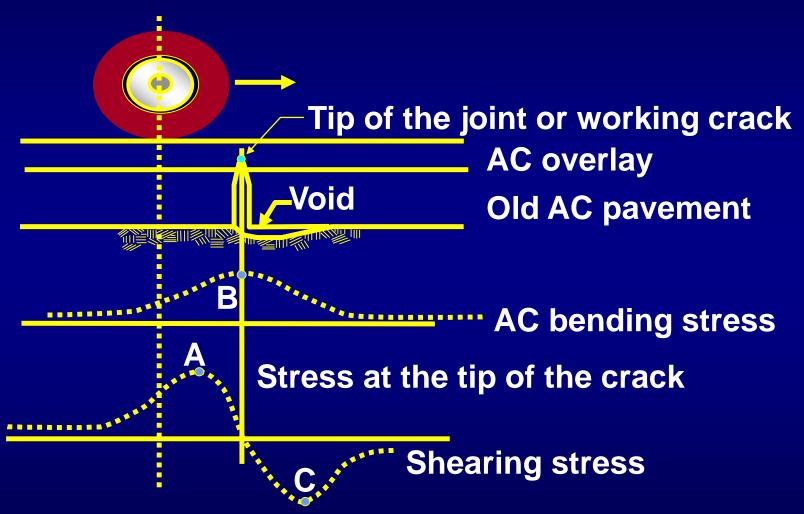
- Consider trade-offs between
 - Overlay type
 - Overlay thickness
 - Pre overlay repair extent

Reflection Cracking

- Appear above joints or cracks in underlying pavement layer
 - AASHTO design equations do not consider directly
 - Additional steps must be taken to reduce the rate and severity


Reflection Cracking

- Causes
 - Low temperature cycles
 - Traffic loads
- Excessive tensile stresses developed in overlay due to movement of existing pavement
- Initiates at bottom of overlay


Stresses from Low Temperatures

Stresses from Traffic Loads

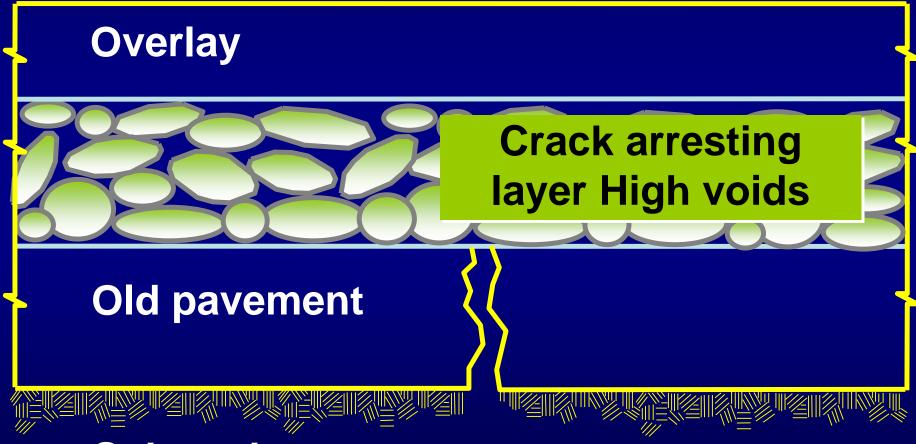
Reflection Cracking Control Measures

- Increased overlay thickness
- Fabrics
- Crack-arresting interlayers
- Pre overlay treatments

Increased Overlay Thickness

- Does not prevent the occurrence of reflection cracking
- Reduces the rate and severity of reflection cracking
- Cost-effectiveness must be considered relative to other techniques

Fabrics


- Provide physical restraint (reinforcing layer) to resist formation of cracks
- Not as effective with substantial horizontal and vertical movements
- Most effective at longitudinal joints and in warm climates

Crack-Arresting Interlayers

Aggregate lift or ASCRL (HMA)

Subgrade

Pre-overlay Repair Treatments

- Any method that reduces movement at joints and cracks can potentially reduce reflection cracking
- Possible treatments
 - Surface milling
 - Crack Repair
 - Crush and Shape (rehab strategy)

Summary

- Examine the feasibility of an overlay as most effective alternative vs. major rehab
- There is more to overlay design than just thickness design
 - Pre-overlay repairs
 - Sub-drainage
 - Reflection crack control
- Need to have reasonable performance expectations!

Maintaining your roads with Asphalt

- Asphalt Overlays
- Asphalt for Preventive Maintenance

Asphalt for Preventive Maintenance

Thin Asphalt Overlays

- Shift from new construction to renewal and preservation
- Functional improvements for safety and smoothness needed more than structural improvements

Benefits of Thin Asphalt Overlays

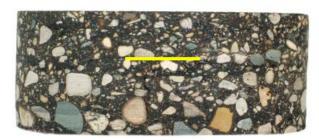
- Long service, low lifecycle cost
- Maintain grade and slope
- Handles heavy traffic
- Smooth surface
- Seal the surface
- No loose stones
- Minimize dust
- Minimize traffic delays

- No curing time
- Low noise generation
- No binder runoff
- Can be recycled
- Can use in stage construction
- Easy to maintain
- Restore skid resistance

Preventive Maintenance

WHAT EXACTLY *IS* YOUR PREVENTIVE MAINTENANCE PROGRAM PREVENTING?

Asphalt for Preventive Maintenance


HMA Ultra-Thin:

- Extends Pavement Service Life
- Protects the Pavement Structure
- •Restores Pavement Smoothness

HMA Ultra-Thin

High Value Pavement Enhancement

- Extends Pavement Life
- Protects the Pavement Structure
- · Restores Pavement Smoothness

HMA Ultra-Thin 3/4" - 1" Over existing asphalt pavement

- VS -

Typical Surface Treatment 3/16" - 3/8" Over existing asphalt pavement

What does HMA Ultra-Thin do:

- Protects the pavement structure
- Adds structural value
- Corrects surface deficiencies
- •Improves skid resistance
- Improves ride quality (restores crown)

12/23/2005

GUIDE SPECIFICATION FOR HMA Ultra-Thin

1 of 4

- Description. This special provision provides acceptance testing requirements for use on HMA Ultra-Thin Overlay mixture.
- b. Materials. The HMA and materials shall meet the following requirements:
 - Bond Coat. The bond coat material will be emulsified asphalt conforming to the requirements of Section 904 of the Michigan Department of Transportation (MDOT) 2003 Standard Specifications for Construction. Type SS1h
 - HMA Ultra-Thin Overlay. The Ultra Thin HMA Overlay shall be composed of a mixture of aggregate, asphalt binder, and if required, mineral filler, as listed in Table 1.

Table 1 - HMA Ultra-Thin Overlay Mixture Requirements

	Low Volume	Medium Volume	High Volume
	Comm. ADT	Comm. ADT	Comm. ADT
Parameter	<380	380 - 3400	>3400
Marshall Air Voids %	4.5	4.5	5.0
VMA % (min.) based on Gsb	15.5	15.5	15.5
Fines/Binder % Max.	1.2	1.4	1.4
Flow (0.01 in.)	8-16	8-16	8-16
Stability Min. (lbs)		1200	

 Aggregate Gradation and Physical Properties. The combined gradation of the aggregate portion of the mixture, including the mineral filler, shall be within the limits of Table 2. The physical properties of the combined aggregates shall meet the criteria of Table 3.

Table 2 - HMA Ultra-Thin Overlay Aggregate Gradation

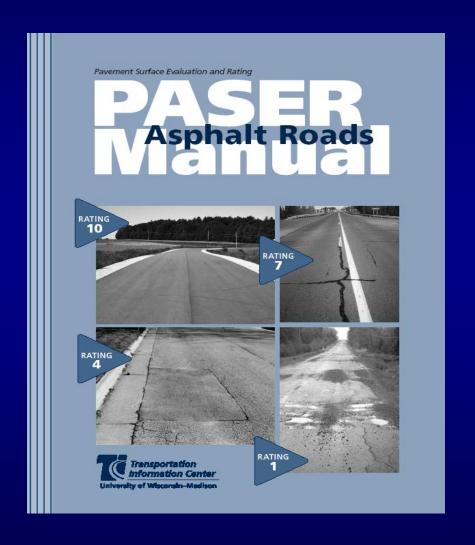
Sieve Size	Total Passing Percent by Weight	
½ inch	100	
3/8 inch	99-100	
No. 4	75-95	
No. 8	55-75	
No. 30	25-45	
No. 200	3-8	

Guide Specification for HMA Ultra-Thin 2005: APAM

APAM Guide Specification

Low Volume	Medium Volume	High Volume
Comm. ADT	Comm. ADT	Comm. ADT
<380	380 - 3400	>3400
PG 64 -22*	PG 64 -28P**	PG 70-22P*

In areas North of M-46, May use PG 58-28 (Low) or PG 70-28P (High)


^{**} May use another "readily available" polymer modified (P) grade.

Existing Pavement Conditions:

- Good cross section
- Good base, structurally sound
- Visible surface distress may include:
 - •Moderate cracking, ≤ 1/2" wide
 - Raveling and surface wear
 - •Slight to moderate flushing or polishing
 - Occasional patch in good condition

4 – 6 Paser rating

	HMA UT	Chip Seal	Microsurfacing
Increase skid resistance	✓	✓	✓
Minimizes curb loss	✓	✓	✓
Corrects surface distress	✓	✓	✓
Can be applied in one pass	✓	✓	
Increases structural strength	✓		
Improves ride quality	✓		
Improves pavement draining	✓		
Corrects minor rutting	✓		✓
Eliminates dust, loose aggregate	• 🗸		✓
Minimizes delamination	✓		✓

HMA Ultra-Thin Performance

MDOT Projects - Statewide

UT Type	# of Jobs	Length (miles)	Avg. Age (end service)	Avg. Age (in service)	Avg. Age (overall)
Ultra-thin low	52	483	6.6 (13)	9.8	8.6
Ultra-thin med	41	339	5.5 (4)	8.6	6.6
Ultra-thin high	16	89	5.3 (3)	7.3	6.4

Prevention Maintenance Treatments Cost Comparison

Treatment	\$/syd	Cost/mile (24' wide)	MDOT Life extension range (years)	Life extension range average (years)	Cost/mile per year
Double chip seal	\$3.18	\$44,773	3-5	4	\$11,193
Micro-surface	\$2.61	\$36,747	3-5	4	\$9,187
Ultra-thin low	\$2.51	\$35,339	5-9*	9*	\$3,927
Ultra-thin med	\$2.87	\$40,408	5-9*	8*	\$5,051
Ultra-thin high	\$3.29	\$46,321	5-9*	7*	\$6,617

^{*}Average Life Extension estimated by APAM Unit Prices based on MDOT Information as of Jan. 2016

Prevention Maintenance Treatments Cost Comparison

Treatment	\$/syd	Cost/mile (24' wide)
Double chip seal	\$3.18	\$44,773
Micro-surface	\$2.61	\$36,747
Ultra-thin low	\$2.51	\$35,339
Ultra-thin med	\$2.87	\$40,408
Ultra-thin high	\$3.29	\$46,321

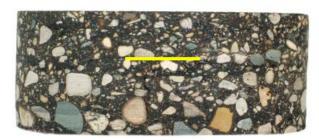
^{*}Average Life Extension estimated by APAM Unit Prices based on MDOT Information as of Jan. 2016

Prevention Maintenance Treatments Cost Comparison

Treatment	Life extension average (years)	Cost/mile per year
Double chip seal	4	\$11,193
Micro-surface	4	\$9,187
Ultra-thin low	9*	\$3,927
Ultra-thin med	8*	\$5,051
Ultra-thin high	7*	\$6,617

^{*}Average Life Extension estimated by APAM Unit Prices based on MDOT Information as of Jan. 2016

Asphalt for Preventive Maintenance


HMA Ultra-Thin:

- Extends Pavement Service Life
- Protects the Pavement Structure
- •Restores Pavement Smoothness

HMA Ultra-Thin

High Value Pavement Enhancement

- Extends Pavement Life
- Protects the Pavement Structure
- · Restores Pavement Smoothness

HMA Ultra-Thin 3/4" - 1" Over existing asphalt pavement

- VS -

Typical Surface Treatment 3/16" - 3/8" Over existing asphalt pavement

Maintaining your roads with Asphalt

Asphalt is the popular solution to pavement maintenance. Asphalt overlays are economical, long-lasting, and effective in treating a wide variety of surface distresses to restore ride quality, skid resistance, and overall performance.

Maintaining your roads with Asphalt

www.apa-mi.org