Achieving Density

60th Annual Asphalt Paving Conference March 29, 2016

PRESENTED BY: TODD MANSELL, CATERPILLAR

Why do we chase density instead of manage it?

Lack of training

Lack of good communication

► Not sure where to start

How do we Manage Density?

- 1. Know your lines of communication
- 2. Know your mix design properties, job specifications, targets
- 3. Establish an effective and efficient rolling pattern
- 4. Troubleshoot the root cause(s) when we're not getting density
- 5. Plan for unplanned events
 - Plant breakdowns
 - Equipment breakdowns paver, roller, trucking, MTV
 - Trucking problems

Lines of Communication

Highway 68 Project # 2016-04 PHONE LIST January , 2016

Emergency 911

Makesno Sense	Project Manager	555-234
Lotsa Iron	Equipment Manager	555-234
Alwayson Myphone	Area Superintendent	555-234
Ihate Timecards	Paving Foreman	555-234
Orange Cone	Traffic Control	555-234
Big Mack	Trucking	555-234
Marshall Hammer	Quality Control Manager	555-234
Thirsty Formore	Water truck	555-234
Reemove Andreplace	DOT Inspector on site	555-234
Hot Mixer	Batch room @ drum plant	555-234
Billitoo Anyjob	Equipment dispatch	555-234
I. Fixit	Mechanic	555-234

Foreman Superintendent Truck Boss Project Manager

Know mix properties

Marshall mix or Superpave? Relative density or Rice (TMD)?

▶ Mix selection – did we submit the best mix for the job based on experience?

Have we had success or problems with this mix in the past?

- ► Do we have experience with getting density with this mix?
- ► Is it a harsh mix or a tender mix?

What is the lab-compacted unit weight of the mix?

What does it take to get density?

Temperature

Temperature

Temperature

Temperature is Critical

Keep steel drums off the mix!!!

Time Available for Compaction

Density must be achieved while the mix is still *HOT*

PaveCool or MultiCool tools:

PaveCool Main Window

 One of the biggest problems in Minnesota's bituminous pavements is a lack of in-place density due to late season paving practices. When bituminous materials are placed in cool

What are the job specs?

► What is the minimum density requirement for mainline? 92-97%

- ► Joint density? 90% Shoulders? n/a
- Smoothness? IRI improvement? 60% one lift
- ► How will density be measured and accepted? Cores?

What is a good target density?

► Job spec is 92-97%

Our job target for final density is 94%

A good goal for <u>breakdown compaction</u> is 95% of our overall target density

 $0.95 \times 94\% = 89\%$

Establish an effective rolling pattern

Based production and density 1. **Equipment Selection** 2. **Decision Point** Balance paver & roller speed 3. **Decision Point** 4. Test Strip

5. Verify during production

3 Phases of Roller Compaction

What is a rolling pattern?

	Breakdown	Intermediate	Finish
%TMD	90-92%	92-94%	94+ %
		MTERPILI AR PS-SBOB	
Temp	300-260°F	260-200°F	200-160°F
Coverage	3	2	2 (1 vibe, 1 static)
Settings	High A, Low F	90 psi	Low A, static
	126 feet	200 feet	200 feet

Review: Types of rollers

- Static steel drum
- Oscillation
- Vibratory steel drum
- Vibratory pneumatic
- Pneumatic
- Combination

Static Steel Drum

► PLI

Smaller contact area = higher pressure

Oscillation

- Back and forth drum movement
- Maintains contact with surface
- Less aggressive compaction

Vibratory Steel Drum

Build density from the top down

Breakdown, intermediate and finish rolling

Settings for amplitude and frequency

Static mode for finish rolling

Amplitude = compactive effort

Speed is constant

High Frequency

Low Frequency

Frequency & Roller Speed & Impacts per foot

10 to 14

Calculating impacts per foot (IPF)

$$IPF = \frac{3,000 \text{ vpm}}{300 \text{ fpm}} = 10 \text{ impacts per foot}$$

Re-arrange the equation to solve for speed

Speed =
$$\frac{3,000 \text{ vpm}}{10 \text{ ipf}}$$
 = 300 feet per minute

Connecting Amplitude and Frequency

Higher Amplitudes associated with Lower Frequencies

High Amplitude (<0.80 mm) = Low Frequency (>2800 vpm)

Medium Amplitude (0.5 mm – 0.8 mm) = Medium Frequency (2800-3400 vpm)

Low Amplitude (0.2 mm - 0.5 mm) = High Frequency (3400 vpm)

Balanced Roller Vibration

Optimum compaction occurs when all forces are accepted by the asphalt layer

Balance between forces of compaction and the asphalt layer

When compaction is balanced, most of the vibratory force is transmitted into the ma

Balanced Roller Vibration

me compaction energy will be transferred back to the machine if compaction is not balanced.

- Forces out of balance create drum bounce
- Inefficient operation
- ► Solve bouncing:
 - change speed
 - lower amplitude
 - higher frequency
 - one drum static
 - both drums static

Pneumatic Rollers

Most commonly used for intermediate rolling

Knead the mix

Close up surface voids and tension cracks

Efficient building density

Build density from the bottom up

Manipulation

Overlapping tires develop overlapping areas of contact pressure, creating manipulation forces.

Manipulation occurs due to overlapping tires

Some forces move sideways

Tightens surface texture

Pneumatic tire rollers

Adjust tire pressures based on mat thickness

Ballast weight is usually sand, water or steel plates

Adjusting Tire Pressures

Higher Pressure

Lower Pressure

Keep Tire Pressures Equal

► Keep tires hot

► Within 30°F of pavement

Tire pressures equal

► Warm up before paving

Vibratory pneumatic tire roller

Adjustable amplitude settings instead of ballast

Combination

Establish an effective rolling pattern

Based production and density 1. **Equipment Selection** 2. **Decision Point** Balance paver & roller speed 3. **Decision Point** 4. Test Strip

5. Verify during production

Planning

THE PROVIDENCE es in Hot Mix -Asphalt Operations

Pre- paving planning

- Tons per day
- Paver speed
- **Roller speed**
- Target densities, IRI

► Tools available

- NAPA IS-120
- Paving Production Calculator App
- Amplitude Selection App
- PaveCool App

Amplitude

Balancing Paver Speed & Roller Speed

Expected 2,500 tons/day ▶ 8-hr paving window End dumping (18-ton) ▶ 12-ft paving lane – highway Unconfined edges on first lane 2-inch overlay ► 12.5mm polymer-modified mix ► Given 3 rollers ▶ 79" steel vibratory x 2

▶ 82″ pneumatic

Paver speed to place 2,500 tons/day

PRODUCTION PLANNING

0

0

CATERPILLAR®

Introduction The Production Planning Calculator can be used for project planning Trucking prior to the start of paving and compaction. Paver Speed The calculator will help establish a balance between: Compaction a) Plant output and Trucking; b) Plant output and Effective Paver Speed; and Windrow c) Effective Paver Speed and Effective Compactor Speed. Yield It can also be used to calculate yield per truck or total daily yield. Slope Included is a slope calculator and a windrow dimension calculator. Thickness NOTE: The Production Planning Calculator should not be used for cost Job Summary estimating. The calculator is designed to assist in project planning and is only as accurate as the raw data entered in the Legal interactive sections. Always verify production estimates obtained from the use of this calculator. EXIT

Use Paving Production Calculator <u>or</u> calculate by hand

Paver speed to place 2,500 tons/day

CATERPILLAR®

	Trucking Calculator		•
	G		
	General Inputs	ENGLISH UNITS	METRIC UNITS
Trucking	Production Rate of Hot Plant	300 tons/hr	272 tonnes/hr
Paver Speed	Multiple Silo Plants: Initial Storage	100 tons	91 tonnes
	Paving Hours	8.0 hrs	8.0 hrs
Compaction	Truck Capacity <i>(size)</i>	18.0 net tons	16.3 net tonnes
Windrow	Truck Cycle Times (minutes)		
Yield	Load Time and Ticket	6	
	Tarp	4	
Slope	Haul to Job	25	
Thickness	Time on Site	2	
	Dump / Clean	8	
Job Summary	Return Haul	20	
Legal	Truck Cycle Factor (total time in hours)	1.1	
EXIT	Number of Trucks Needed	<mark>19.1</mark>	
0 0	к 2.0		

PRODUCTION PLANNING

Total daily tonnage

- ► Paving window
- Truck capacity

► Cycle time

Paver speed using end dumps

CATERPILLAR®

PRODUCTION PLANNING

	Paver Speed Calculator				
	7				
Trucking	General Inputs	ENGLISH UNITS		METRIC UN	IITS
Trucking	Paving Thickness	2.50 in		63.5	mm
Paver Speed	Paving Width	12.00 fe	et	3.658	meter
Compaction	Material Density Uncompacted	140 <i>Ib</i>	s/ft ³	2243	kg/m ³
Windrow	Paver Speed @ Given Production Rate	300 #		272	
Yield	Production Rate of Hot Plant Calculated Paving Speed - 100% Efficiency		ns/hr /min	8.72	tonnes/hr m/min
	Calculated Paving Speed - 95% Efficiency		/min	9.16	m/min
Slope	Calculated Paving Speed - 90% Efficiency		/min	9.59	m/min
Thickness	Calculated Paving Speed - 85% Efficiency	32.9 ft,	/min	10.03	
	Calculated Paving Speed - 80% Efficiency	34.3 ft	/min	10.46	m/min
Job Summary	Calculated Paving Speed - 75% Efficiency	35.8 ft	/min	10.90	m/min
Legal	Effective Paving Speed	28.6 f	t/min	8.72	m/min
EXIT					
• •	2.0				

Lift thickness Width Loose density

36 fpm

Determine Number of Passes Required

ExperienceTest Strip

Amplitude Selection App

Inputs to App

Confirm with Test Strip

► CB54XW 79" drum

- ► Low Amp = 0.012"
- ► High Frequency = 3,800 vpm
- ► High Amp = 0.032"
- Low Frequency = 2,520 vpm

Roller Speed: High Amplitude/Low Frequency

CATERPILLAR®

PRODUCTION PLANNING

i	Compaction Calculator		•
E E			•
	2		
Trucking	Roller Model Click to Select Another Model	CB54 XW	
	General Inputs	ENGLISH UNITS	METRIC UNITS
Paver Speed	Paving Width	12.00 feet	3.658 meter
Compaction	Actual Drum Width	79 in	200.66 cm
compaction	Amount of Overlap	12.0 in	30.5 cm
Windrow	Speed of Vibrator	2520 VPM	2520 VPM
Yield	Impacts (recommeded: ^{8 - 14} per foot)	10 per ft	33 per m
	Number of Passes to Cover Mat Width On	Ce 3	
Slope	Number of Repeat Passes (from test strip)	2	
Thickness	Total Number of Passes	7	
	Roller Efficiency Rate (recommended 75 to 85%)	80	
Job Summary			
Legal	Actual Roller Speed 252 FF	PM 73 WPM	Effective Paver Speed: 28.6 ft/min
-ogui	Effective Roller Speed* 29 🚽 🕫	РМ 9 МРМ	
EXIT	• Effective Roller Speed should be at least 100% but no more that	n 115% of the Effective Paver Sp	need. %* = 101
0 0	R 2.0		

Impacts per foot Drum width \blacktriangleright Frequency = 2,520 2 Passes (test strip) **29 fpm** 29 fpm < 36 fpm

Roller speed calculated by hand

252 ÷ 88 = 2.8 mph

Calculated Roller Speed

Actual roller speed =

252 fpm 7 passes

Actual roller speed = 36 fpm

Effective Roller speed = 36 fpm x 0.80 = 29 fpm

Paver can not exceed **29** fpm

Need <u>36 fpm</u> to get 2,500 tons per day!!

What can I do now!?!?

Slow down paver to 29 fpm
Set roller at a higher frequency
Get an 84" wide roller
Get an additional 79" roller

Roller Speed: Low Amplitude/High Frequency

PRODUCTION PLANNING

CATERPILLAR®

S METRIC UNITS feet 3.658 in 200.66 in 30.5 cm VPM 3800				
feet 3.658 meter in 200.66 cm in 30.5 cm				
in <u>200.66</u> cm in <u>30.5</u> cm				
in <u>30.5</u> cm				
3800 1000				
<u>VPM</u> <u>3000</u> VPM				
per ft33per m				
3				
Number of Repeat Passes (from test strip) 2				
7				
80 %				
80 %				
2				

Frequency = 3,800 vpm
Low amplitude

Requires 3 passes (test)

43 fpm

43 fpm > 36 fpm

Roller speed at higher frequency

CATERPILLAR®

PRODUCTION PLANNING

-	Compaction Calculator		•
Barb .			•
	0		
Trucking	Roller Model Click to Select Another Model	CB54 XW]
	General Inputs	ENGLISH UNITS	METRIC UNITS
Paver Speed	Paving Width		3.658 meter
Compaction	Actual Drum Width		200.66
	Amount of Overlap	12.0 in	30.5 cm
Windrow	Speed of Vibrator	3800 VPM	3800 / VPM
Yield	Impacts (recommeded: 8 - 14 per foot)	10perft	per m
	Number of Passes to Cover Mat Width On	Ce 3	
Slope	Number of Repeat Passes (from test strip)	3	
Thickness	Total Number of Passes	9	
	Roller Efficiency Rate (recommended 75 to 85%)	80	8
Job Summary		PM 116	Effective Paver Speed:
Legal			28.6 ft/min
	Effective Roller Speed* 34 -77	м 10 мрм	8.72 m/min
EXIT	*Effective Roller Speed should be at least 100% but no more than	n 115% of the Effective Paver Spee	d. %* = 119
0 0	2.0		

 ▶ Higher frequency ≈ lower amplitude which requires an additional pass to get same density

34 fpm

34 fpm < 36 fpm

Roller selection – do we have a choice?

- Mix of roller types
- Drum width, weight, amplitude, frequency
- Number of rollers

Roller drum width considerations

Select the optimum drum width for the job to get coverage before the mix cools

Fewer passes = higher production & profit

Narrower drums generally have higher PLI

Need to consider production vs. ability to get density

12-foot wide lane: 84" x 2 passes

12-foot wide lane: 79" x 2 passes

12-foot lane: 67" x 3 passes

Roller speed (breakdown 84")

CATERPILLAR®

-	Compaction Calculator				
8.0E8.					_
Trucking	Roller Model Click to Select Another Model) св	64		
Trucking	General Inputs	ENGLISH UN		METRIC UNITS	
aver Speed	Paving Width	12.00	feet	3.658 meter	
ompaction	Actual Drum Width	84	in	213.36 cm	
ompaction	Amount of Overlap	12.0	in	30.5 cm	
Windrow	Speed of Vibrator	2640	VPM	2640 VPM	
Yield	Impacts (recommeded: 8 - 14 per foot)	10	per ft	33 per m	
TICIU	Number of Passes to Cover Mat Width Once 2				
Slope	Number of Repeat Passes (from test strip) 2				
Thickness	Total Number of Passes 5				
IIICKIICSS	Roller Efficiency Rate (recommended 75 to 85)				
b Summary					
Legal	Actual Roller Speed 264	FPM <mark>9</mark> 0	wirM	Effective Paver Speed: 28.6 ft/m	
Legal	Effective Roller Speed* 42 🕇	FPM 13	MPM	8.72 m/n	
EXIT	• Effective Roller Speed should be at least 100% but no more th	an 115% of the Effe	active Paver Soeen	%• = <u>147</u>	-

PRODUCTION PLANNING

Wider drum
Lower frequency
Higher amplitude
Passes (test strip)

42 fpm

42 fpm > 36 fpm

Test Strip

Based production and density 1. 2. Equipment Selection **Decision Point** Balance paver & roller speed 3. **Decision Point** 4. Test Strip 5. Verify during production

Test Strip

Simulate job site conditions – don't fake it

Have a post Test Strip meeting

Rolling patterns based on the situation

- Tender mixes
 - Steel stay off!
- Stiff or harsh mixes
 - Pneumatic breakdown
 - Echelon rolling
- Longitudinal joint
 - Confined vs. unconfined edge

Number of roller passes

Determine target density values for each roller

▶ 95% of target for breakdown roller is a good target.

Determine number of passes with QC team
 Take density readings after each roller pass

Trial and error to 'fine tune' roller pattern

Number of roller passes

		Breakdown	Intermediate	Finish
		12-ton DDV	14-ton tire	8-ton DDV
Settings		High A, Low F		1 vibe, low A, high F, 1 static
1 st Pass	Temp	275	250	200
	Density	88%	92%	94% (vibe)
2 nd Pass	Temp	260	245	193
	Density	90%	93%	94% (static)
3 rd Pass	Temp	252	230	
	Density	91%	93.5%	
4 th Pass	Temp			
	Density			

How far back ?? Breakdown

Length of the Roller Pass

Solve the equation for distance

Length of the Roller Pass (cont'd)

Distance = Speed x Time

- Roller speed = 2,640 vpm / 10 ipf = 264 fpm
- Time to cool comes from PaveCool (or measure it)

PaveCool from 275°F to 252°F

Length of the Roller Pass (cont'd)

Distance = Speed x Time = $264 \times 3 = 792 \text{ ft}$

Roller speed = 264 fpm

Time = 3 minutes

Roller distance = $264 \times 3 = 792$ ft

Length of the Roller Pass (cont'd)

We need a 5-pass pattern from Test Strip

Roller distance = 792 ft in 3 minutes

We lose some distance changing direction \approx assume 0.80 efficiency 792 x 0.80 = 633 feet traveled in 3 minutes 633 / 5 = 126 feet

Length of roller pass = **126 feet**

**If conditions change – re-calculate the length of roller pass

Put it all together!

- 1. Types of rollers
- 2. Amplitude & Frequency steel drum
- 3. Pneumatic tire roller settings
- 4. Time Available for Compaction
- 5. Number of roller passes

Sequence & Timing

	Breakdown	Intermediate	Finish
%TMD	90-92%	92-94%	94+ %
		MIENPILLAR DE PS-3508	
Temp	300-260°F	260-200°F	200-160°F
Coverage	3	2	2 (1 vibe, 1 static)
Settings	High A, Low F	90 psi	Low A, static
	126 feet	200 feet	200 feet

Efficient Compaction of Stiff & Tender mixes

Stiff mixes

- generally very stable and can take high compactive forces
- compact easier at higher temperatures
- use higher amplitudes

Tender mixes

- temperature sensitive through a specific temperature range
- achieve density before tender zone rolling in echelon <u>OR</u>
- wait until mix cools below tender zone and resume rolling

Pneumatic breakdown on a stiff mix

Tender Mix

Compacting tender mixes

Does not compact in specific temperature range or zone

► Roll in echelon

Resume compaction below tender zone temp

Do NOT run a steel drum in the tender zone

Rolling in Echelon (side-by-side)

- Take advantage of TEMPERATURE
- Make more passes before the mix cools
- Can be done without a finish roller
- Ideal to use same size rollers

Echelon with same & different rollers

Echelon – steel drum

Echelon - pneumatics

Longitudinal Joint - Build it Right

- Paver leaves straight edge to match
- Makes consistent
 joint overlap possible
- Can use edge cutter

Excessive Overlap

Poor compaction, loose rock at joint

- Joint needed raking prior to compaction
- Real solution is to control end gate overlap

Keep end gates on the paver down

Have auger extensions when needed

What we're trying to avoid...

- Excessive head of material
- Segregation at end gate (joint)
- Lack of mix at joint

Proper Amount of Horizontal Joint Overlap

$\frac{1}{2}$ " to 1" overlap

End Gate Overlap

- End gate down to create straight edge
- Overlap cold side 1/4in
- Correct pre-compaction height
- End gate up causes rounded edge, segregation and fractured aggregate

Fluff Factor (roll down) 1/4" per 1"

No Raking

- End gates set properly
- Correct overlap
- Correct height match
- Sufficient material to joint

Which side was paved first?

Proper Overlap and Height Match – no raking

Rolling Pattern tools you have...

- 1. Finding the Time available for Compaction PaveCool, measure
- 2. Calculating roller speed 10-14 ipf (formula, NAPA IS-120, Apps)
- 3. Calculating the length of roller pass (Distance = Speed x Time)
- 4. Different roller trains to consider echelon, pneumatic breakdown
- 5. Compaction Troubleshooting guide

Not getting density: Root Cause

Identify root cause(s) when density is <u>not</u> being achieved

Systematic approach:

most likely reasons and easiest to check to less likely and more difficult to check

Flowchart on the next slide is not "all inclusive", but it covers many of the most common reasons

Asphalt Compaction Troubleshooting

*Know the recommended compaction temperature for the mix design being used. Know the Time Available for Compaction.

Troubleshooting situations

- 1. Mix temperature
- 2. Paver speed, roller speed
- 3. Verify roller settings of Amplitude, Frequency, Speed
- 4. Equipment not working as expected (low VPM, no vibe)
- 5. Nuclear gauge not calibrated/out of calibration
- 6. Sand changes at plant affects TMD (Rice), VMA
- 7. AC content, fines return at plant, gradation

Mix Temperature: Increase TAC

Increase HMA temperature behind the paver

- Increase plant production temperature
- Manage silos
- Tarp loads
- Manage windrows
- Manage trucking

Increase the thickness of the HMA layer
Use higher frequency rollers on thin lifts
Breakdown with a pneumatic tire roller

Breakdown in echelon with two double drums or pneumatics

Approximate temperature losses

- Mix sitting in trucks $\approx 10^{\circ}$ F per hour
- Sitting in windrows ≈ 2°F per minute
- No tarps not significant, sometimes worse with loose tarps, thicker crust will form

 Keep paver hopper full when waiting for 30 minutes or less

The mix is too cool – what now?!?!

1. Call the plant to see what they can do

2. Reduce paver speed

3. Add more rollers

- 4. Plan for the next day
 - Specify a load out temp when you order mix
 - Check your trucking operation

Verify Roller Settings

Settings per test strip?

- Amplitude
- Frequency
- ▶ Speed (10-12 ipf)

Is the equipment in good working condition?

Managing for unplanned events

Plant breakdown

Equipment breakdown

- Paver
- ► Roller
- ► Trucks

► Other...

Paver breakdown

Mix on road

► Mix in MTV

Finish rolling & build a joint?

Roller breakdown

Stop paving?

Backup roller on site?

Have we calculated a paving speed and rolling pattern for the remaining rollers?

Trucking problems

Interrupted trucking

Delays longer than 30 minutes

Build a new transverse joint

Plan for Excellent Compaction!

- Collect information
- Set targets
- Calculate paving speed
- Calculate roller speed
- Balance tons/hr, paver, rollers
- Confirm test strip
- Check, check, check...
- Make changes as needed

Thank you for your attention!

Questions?

