

Improving Pavement Durability With Best Practices

61st Annual Asphalt Paving Conference FireKeepers Casino Hotel 11177 E. Michigan Avenue Battle Creek, Michigan 49014

Evolution of Traffic

Stress

- Interstate highways 1956
- AASHO Road Test 1958-62
 - still widely used for pavement design
 - legal truck load 73,280 lbs.
- Legal load limit to 80,000 lbs. 1982
 - 10% load increase
 - 40-50% greater stress to pavement
- Radial tires, higher contact pressure
- FAST Act raising load limit to 120,000 lbs. (in select locations)

Led to Rutting in 1980's

Which led to...Superpave

- Fixed the rutting problem
- Gyratory compaction lowered binder contents
- Add in higher and higher recycled materials?

Improved Compaction = Improved Performance

A BAD mix with GOOD density out-performed a GOOD mix with POOR density for ride and rutting.

WesTrack Experiment

Effect of In-Place Voids on Life

Washington State DOT Study

Importance of Tack Coats

- Promotes the bond between pavement layers
 - Prevents slippage between pavement layers
 - All layers working together
 - Vital for structural performance of the pavement
 - Seals all transverse & longitudinal vertical surfaces

Loss of Fatigue Life Examples

- May & King:
 - 10% bond loss = 50% less fatigue life

- Brown & Brunton
 - No Bond = 75% loss of life
 - 30% bond loss = 70% loss of life

Loss of Life

Everyone MUST be on the same page asphalt institute

What we are talking about:

- Original Emulsion—undiluted emulsion consists of a paving grade binder, water, and an emulsifying agent.
- Diluted Emulsion—an emulsion that has been diluted with additional water.
 - Critical to sprayed control
 - 1:1 typical (Original Emulsion:Added Water)
- Residual Asphalt—the remaining asphalt after an emulsion has set typically 57-70 percent or Original Emulsion

What difference does it make? asphalt institute

If the example spec intended 0.05 gal/yd² of residual asphalt:

To receive **Residual Asphalt** at **0.05 gal/yd²** using an emulsion with 60% residual asphalt, the contractor would need to apply:

0.083 gal/yd² of Original Emulsion or 0.167 gal/yd² of 1:1 Diluted Emulsion

What is going on and why?

8-10 years est. Interstate Pavement

Cost of Tack Coat

- New or Reconstruction
 - About 0.1-0.2% of Project Total
 - About 1.0-1.5% of Pavement Total Cost
- Mill and Overlay
 - About 1.0-2.0% of Project Total
 - About 1.0-2.5% of Pavement Total Cost

30-100% of Original Pavement Costs

Common Tack Coat Questions asphalt institute

- What is the Optimal Application Rate?
 - Surface Type
 - Surface Condition

Workshop Recommended Ranges

Surface Type	Residual Rate (gsy)	Appx. Bar Rate Undiluted* (gsy)	Appx. Bar Rate Diluted 1:1* (gsy)
New Asphalt	0.020 - 0.045	0.030 - 0.065	0.060 - 0.130
Existing Asphalt	0.040 - 0.070	0.060 - 0.105	0.120 - 0.210
Milled Surface	0.040 - 0.080	0.060 - 0.120	0.120 - 0.240
Portland Cement Concrete	0.030 - 0.050	0.045 – 0.075	0.090 - 0.150

^{*}Assume emulsion is 33% water and 67% asphalt.

Triple Lap Coverage

Tack Coat

Full width of mat to minimize movement of unsupported edge.

Common Tack Coat Question asphalt institute

- When to Re-Tack?
 - Tracking
 - Contamination

If in doubt ...
Re-Tack

Don't We Already Know How To Build a Longitudinal Joint?

I-71 in Columbus, OH

Longitudinal Joint Definitions asphalt institute

Unsupported Edge Will Have Lower Density

Different Types of Longitudinal Joints asphalt institute

First Pass Must be Straight

Avoid Segregation at the Joint

- Don't delivery segregated mix to the joint area
- Use auger & tunnel extensions

Mill & Pave One Lane at a Time

asphalt institute

Paint the Vertical Face

Good: Double Tack with

Emulsion

Better: PG Binder

Best: Joint Adhesive

Overlap By 1-inch +/- ½ Inch

- Overlap By 1-inch +/- 1/2
- If milled or cutback joint, then 0.5-inch
- Keep end plate flat
- Set automation to NEVER
 STARVE THE JOINT!
- Joint Matcher best (versus ski) to match exact amount of material needed at joint

Do NOT Rake Away From the Joint asphalt institute

Lute the Longitudinal Joint

Rolling Unsupported Edge?

Option 1 Hang over 4-6"

Option 2

1st Pass 4"-6" inside

2nd Pass hang over 4"-6"

What We Don't Want

Rolling Unsupported Edge With First Roller Pass

(If milled or cutback joint, then
Vibratory Roller

If edge of drum is located just inside the unsupported edge, a stress crack can occur here.

Rolling the Confined Edge:

1st pass all on hot mat with roller edge off joint approx 6-12 inches

IDOT Joint Sealer

Licensed Subcontractor ≈ 11 Trucks

Also Works as a Tack Coat

Enhanced Durability of Asphalt

Pavements through Increased In-Place Pavement Density

Enhanced Durability

- A 1% increase in field density can increase asphalt pavement service-life +10% (conservatively)
- Today's compaction target is typically 92% of maximum (G_{mm}) (8% air voids),
 - Varying requirements for longitudinal joints
- Increased Density Pavements target a 2% increase across the entire pavement!
 - Just 2% more... makes a huge difference!

Improved Durability

Balance the Mix Design

Strength/ Stability

Rut Resistance

Shoving

Flushing Resistant

Durability

Crack Resistance

Raveling

Permeability

DON'T ATTACK ONE HALF AT THE EXPENSE OF THE OTHER HALF!!

Choosing a Gradation

Requires better aggregate Higher binder contents

Balancing the Paving Operation

Use Best Construction Practices asphalt institute

Uniform Paving Train Operation

- Determine plant production rate
- Plan for sufficient, timely mix delivery
- Establish a constant paver speed
- Assure ample rollers are available
 - Keep water trucks close to the rollers
 - On shoulder or cold mat

Cost of Compaction

- Least expensive part of the paving process
- Aggregates and binders are expensive in comparison
- Compaction
 adds little to the
 cost of a ton of
 asphalt

Lift Thickness' Effect on Compaction asphalt institute

- Aggregates need room to densify
- Too thin vs. NMAS leads to:
 - Roller bridging
 - Aggregate lockup
 - Aggregate breakage
 - Compaction Difficulties
- NCHRP Report 531 (2004)
 - Fine Graded Mix—Min Thickness = 3 X NMAS
 - Coarse Graded Mix—Min Thickness = 4 X NMAS
 - SMA Mix—Minimum Thickness = 4 X NMAS

Material Cooling

- Thicker = More Time for Compaction
- Free tools for estimating compaction time
 - PaveCool—single lift (generation 1)
 - PC
 - iOs App
 - Google App
 - MultiCool—multiple lifts (generation 2)
 - PC
 - Google App
 - Mobile Web

Vibratory Screed Should Always be "ON"

Paver Speed and Output

Establishing Rolling Pattern

Goal: 93.5% G_{mm}

Rolling Pattern

- Roller width should overlap 6 inches
- Odd number of passes to advance
- Repeat uniformly

Roller Speed is Critical

Slower = More Compaction/Pass

Vibratory Rollers - Amplitude

- Amplitude too high
- Travel speed too fast
- Vibrating cool mat
 - Roll closer to paver
- Damaged gutter
 - Roll along interface

Drum Impacts per Foot

Frequency	2 MPH	3 MPH	4 MPH	5 MPH
2000 vpm	11.36	7.58	5.68	4.55
2200 vpm	12.50	8.33	6.25	5.00
2400 vpm	13.64	9.09	6.82	5.45
2600 vpm	14.77	9.84	7.39	5.91
2800 vpm	15.91	10.61	7.95	6.36
3000 vpm	17.05	11.36	8.52	6.82
3200 vpm	18.18	12.12	9.09	7.27
3400 vpm	19.32	12.88	9.66	7.72
3600 vpm	20.45	13.64	10.22	8.18
3800 vpm	21.59	14.39	10.80	8.63
4000 vpm	22.72	15.16	11.36	9.10

Additional Vibratory Rollers

Maximizing Our R.O.I.

- Infrastructure loads continue to rise
- Budget availability continues to fall
- Increased pavement life can be economically achieved
- Research shows a 10% increase in pavement life can be achieved by increasing compaction by 1%.

What would a 3% increase in compaction do for our industry?

www.asphaltinstitute.org

In-Place Pavement Density March 28th Northern Illinois University, Naperville Campus

Airport Pavement Technical Workshop

April 25th -27th

Rosemont, IL

PDH 22

wjones@asphaltinstitute.org

