Asphalt - The Quiet Pavement

February 9-10, 2010
Soaring Eagle Casino & Resort
Mt. Pleasant, Michigan
Controlling Highway Noise at the Source

• Sound
 – mechanical energy transmitted by pressure waves (sound waves) (as in air) that is the stimulus to hearing

• Noise
 – one that lacks agreeable musical quality or is noticeably unpleasant
Controlling Highway Noise at the Source

Urban Noise Sources

- Road Traffic: 60.0%
- Neighbors: 12.9%
- Enterprises: 11.9%
- Planes: 0.9%
- Railway: 5.1%
- Others: 3.0%
- Trams/Buses: 5.0%
- Recreational: 1.0%
- Unknown: 0.3%
Controlling Highway Noise at the Source

FHWA Guideline = 67 dB(A)

- Pain Threshold
- Hearing Hazard
- Hearing Threshold

<table>
<thead>
<tr>
<th>dB</th>
<th>Pa</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00002</td>
<td>Quiet bedroom</td>
</tr>
<tr>
<td>0.02</td>
<td>0.002</td>
<td>Whispersing</td>
</tr>
<tr>
<td>0.2</td>
<td>0.02</td>
<td>Truck (@ 30’)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Jet plane (@ 1000’)</td>
</tr>
<tr>
<td>20</td>
<td>20000</td>
<td>Space shuttle (@ 100’)</td>
</tr>
</tbody>
</table>

We're driven. www.asphaltinstitute.org
Controlling Highway Noise at the Source

Traffic Stream (Line Source)

Individual Vehicle (Point Source)

$2 \times d$ $L-3\text{dB}$

$2 \times d$ $L-6\text{dB}$
Doubling Traffic adds 3dBA
Controlling Highway Noise at the Source

Side-Line Measurements
- Microphones at 5 & 50m
- Measures all Sources
- Requires Flat, Open Terrain

- Statistical Pass–By
 – Existing Traffic

- Controlled Pass–By
 – Control Vehicles
Controlling Highway Noise at the Source
Controlling Highway Noise at the Source

Close Proximity Method CPX
Controlling Highway Noise at the Source

On-Board Sound Intensity Measurements
Controlling Highway Noise at the Source

OBSI vs CPB Levels

- 12 pavements (PCC & AC)
- 3 tire types
- 2 speeds (97 & 72 km/h)
Controlling Highway Noise at the Source

FHWA - Noise Abatement Criteria

• Projects that Require Evaluation
 • Increase Capacity
 • New Alignments

• Maximum level = 67 dB(A)
• Maximum Change = 10 dB(A) change

“this is not an absolute value or design standard, only a level where noise mitigation must be considered”
Controlling Highway Noise at the Source

Control Options

• Source
 – Eliminate
 – Reduce

• Distance
 – Lengthen Path/Relocate Receiver

• Obstructions
 – Obstacles in Path
 – Insulate
Controlling Highway Noise at the Source

Control Options

• At the Source
 – Vehicles
 • Smaller, Lighter
 • Quieter Less Aggressive Tread Patterns
 – Traffic
 • Lower Speeds
 • Traffic Calming (avoid Starting & Stopping)
 – Pavement Surfaces
 • More on this later
Control Options

• Source
 – Eliminate
 – Reduce

• Distance
 – Lengthen Path/Relocate Receiver

• Obstructions
 – Insulation at Receiver
 – Obstacles in Path
Controlling Highway Noise at the Source

Lengthen Path

- Land Use Planning
 - Type of Use
 - Location
 - Orientation

- Existing Buildings/Subdivisions
- New Routes Only
- No Outdoor Reduction
Controlling Highway Noise at the Source

Control Options

• Source
 – Eliminate
 – Reduce

• Distance
 – Lengthen Path
 – Relocate Receiver

• Obstructions
 – Insulation at Receiver
 – Obstacles in Path
Controlling Highway Noise at the Source

- Insulate Buildings/Windows
 - Effective for interiors only
- Impractical & Expensive
- Public Buildings Only
- No Outdoor Reduction
Control Options

- Through Obstructions
 - Vegetation
 - Berms
 - Barrier Walls
 - Combination of both
Controlling Highway Noise at the Source

Vegetation
- Trees and Shrubs
 - 10 dB(A) Reduction
 - 250 FT of Dense Growth
 - No line of sight
- Additional ROW
- Psychological Effect Only
- No overall Noise Reduction
Controlling Highway Noise at the Source

- Berms
 - Effective only where no line of sight exists
 - Require a large amount ROW
 - Massive amounts of earthwork
 - May not be an Option in Urban Areas
 - No Overall Noise Reduction
Controlling Highway Noise at the Source

Berms & Walls

• Require a large amounts ROW
• Massive amounts of earthwork
• May not be an Option in Urban Areas
• No Overall Reduction from Source
Controlling Highway Noise at the Source

Barrier Walls

• Only Method Approved for FHWA $$ Participation

• 5-8 dB(A) Effective Reduction

• Predictable Results from TNM

• Expensive

• Effective Only if no line of sight

• Limited Mitigating Effect

• Reflected Noise Problem

• Eliminates Scenic Vistas

• No Overall Noise Reduction
Controlling Highway Noise at the Source

Noise Walls
Effective only for those not in the line-of-sight.

Does nothing reduce noise at source.
Controlling Highway Noise at the Source

Noise Walls
Shadow Effect

Not as Effective
For second
And Third
Tier Homes

0 dB(A) Reduction

5-8 dB(A) Reduction

We're driven. www.asphaltinstitute.org
Noise Wall - Shadow Effect

Applies at Ends and Breaks
- Intersections
- Streams
- Driveways
- Etc

5-8 dB(A) Reduction

0 dB(A) Reduction
• Noise walls
 – They are expensive.
 – They don’t work in all types of terrain.
 – Effective for first tier
 – Reflected noise may compound problem
 – Source of noise is still there
Controlling Highway Noise at the Source

European Experience

- Dense Population
- Limited ROW
- Historical Vistas
- Need to Reduce Overall Noise Level
Texture

Chip Seal

Positive Texture

Source: Transtec
Positive Texture

Exposed Aggregate Concrete
Texture

Tined Concrete

Negative Texture
Texture

Source: Ulf Sandberg

Smooth Rolled OGFC

Negative Texture
European Pavements at 97 km/h

Sound Intensity Level, dBA

- PA
- PCC
- DGA
- DLPA
- SMA
Data Base - California & Arizona

Sound Intensity Level, dBA

- OG/RAC Pavements
- PCC Pavements
- DGA Pavements
Controlling Highway Noise at the Source

France

Two layer Open Graded Friction Course
- Expedite Drainage
- Prevent Clogging

- Aggregate Lift / Thickness
 - Bottom 11-14/40-50 mm
 - Top 6-8/25-30 mm

- Won an Environmental Award for Quiet Pavement
Controlling Highway Noise at the Source

Typical IPG double-layer porous asphalt

Top layer: 4/8 mm aggregate, 25 mm thick, air voids 21%

Bottom layer: 11/16 mm aggregate, 45 mm thick, air voids 21%
Twin Layer Paving
Two Screeds – Two Mixes Placed at Same Time
Twin Layer Porous Friction Course

North

Avg. Global dBA

Section

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13
Controlling Highway Noise at the Source

PCC Negative Texture

Longitudinal Tined Diamond Grind
Controlling Highway Noise at the Source
Controlling Highway Noise at the Source

Unintended texture introduced by automatic longitudinal float.
Controlling Highway Noise at the Source
Controlling Highway Noise at the Source

Sound Levels at 50 ft - AZ 101 Pre & Post Project
Uncorrected for Traffic Volume/Speed/Mix

Before and After Comparison
Site 3A
Controlling Highway Noise at the Source

Arizona 101 Wayside Data at 50 ft - Pre & Post Project OGFC
Uncorrected for Traffic Volume/Speed/Mix

Before and After Comparison
Site 3A
Controlling Highway Noise at the Source

Noise is Important to the Public.

Current Mitigation Techniques
- Expensive
- No Overall Reduction
Controlling Highway Noise at the Source

A Decrease of 3 dB(A)
- Equals Doubling Distance
- Cutting Traffic in Half
Controlling Highway Noise at the Source

Decrease of 10dB(A):
- Perceived as a 50% reduction in volume
Controlling Highway Noise at the Source

- Improves Smoothness
- Improves Skid-Resistance
- Reduces Overall Emissions
- Uses Existing Technology
Controlling Highway Noise at the Source

- Routine Overlay Program
- No need to wait
- Done as Maintenance
- SMA & OGFC Mixes
- Designed for Hi-Stress
Thank You!

Wayne Jones
Senior Regional Engineer
Asphalt Institute, Inc.
6113 Bickford Ct
Gahanna, OH 43230
wjones@asphaltinstitute.org
Controlling Highway Noise at the Source

Asphalt Information on the Web

Asphalt Pavement Alliance

www.asphaltalliance.org

www.quietpavement.com