ASPHALT THE SMOOTH QUIET RIDE

2017 Local Roads Workshop Mix Design Basics March 2017

Asphalt Pavement Association Michigan MICHIGAN RIDES ON US

Mix Design Basics

2937 Atrium Drive, Suite 202 Okemos, MI 48864 517-323-7800 www.apa-mi.org

Outline

HMA Volumetric Properties/Terms Mix Design

The 3 A's of Hot Mix Asphalt

Asphalt (binder),

Aggregates,

and Air

HMA = Asphalt + Aggregates + Air

Mix Design Goals **Balancing Act**

Smooth Quite Ride

No

- **Rutting**
- Shoving
- Flushing •

Important HMA Mix Properties

We want

- Stability
- Durability
 - Fatigue resistance
 - Low temperature crack resistance
- Impermeability
- Workability
- Skid Resistance

How? Materials Selection Volumetric design

Volumetric Analysis Definition

The measurement or calculation of the relative masses and volumes occupied by the aggregate, asphalt binder, and air voids in a <u>compacted</u> asphalt mixture

Mass vs. Weight

The difference between mass and weight is that mass is the amount of matter in a material and weight is a measure of how the force of gravity acts upon that mass.

Mass is the measure of the amount of matter in a body. Mass is denoted using m or M.

Weight is the measure of the amount of force acting on a mass due to the acceleration due to gravity. Weight is usually denoted as W. Weight is mass multiplied by the acceleration of gravity.

Volumetric Analysis

- All matter has mass and occupies space
- Volumetric analysis is a way of evaluating the relationships between mass and volume
- Volumetric characteristics assure that there is adequate space within the aggregate structure to accommodate the optimum amount of air and asphalt
- Detailed description
 - MS-2, Chapter 4
 - SP-2, Chapter 4

Component Diagram

SP-2, Fig. 4.2

Specific Gravity

- Ratio of a material's weight to the weight of an equal volume of water
 - Dimensionless number (no units attached)
 - Specific Gravity = 2.70 means that the rock weighs 2.70 times an equal volume of water

HMA Volumetric Terms

- Bulk specific gravity of compacted HMA Gmb
- Maximum specific gravity Gmm
- Air voids Va
- Voids in mineral aggregate, VMA
- Effective specific gravity of aggregate Gse
- Voids filled with asphalt, VFA

BSG of Compacted HMA

• Asphalt binder mixed with aggregate and compacted into a sample

Mass agg. and AC

G_{mb} =

Vol. agg., AC, air voids

Mixing of asphalt and aggregate
Compaction of sample
Mass of dry sample
Mass under water
Mass saturated surface dry (SSD)

Testing

Testing

Obtain mass under water

Testing

Calculations

• $G_{mb} = A / (B - C)^{\prime}$

Where: A = mass of dry sample B = mass of SSD sample C = mass of sample under water

Example Calculations

 G_{mb} = A / (B - C) mass of dry sample A = 4819.7 mass of SSD sample B = 4822.3 mass of sample under water C = 2816.3

4819.7/(4822.3 - 2816.3) = 2.403

HMA Volumetric Terms

- Bulk specific gravity of compacted HMA -Gmb
- Maximum specific gravity Gmm
- Air voids
- Voids in mineral aggregate, VMA
- Effective specific gravity of aggregate Gse
- Voids filled with asphalt, VFA

Maximum Specific Gravity - Gmm

Loose (uncompacted) mixture

Testing of Specimens

- Maximum Specific Gravity of Mixture
 - "Zero" air voids
 - Tested on Loose Mix
 - Dry Weight in Air
 - Vacuum and vibrating to get all air out
 - Submerged Weight in Water

Sample of asphalt and aggregate

Cool to room temperature

Mass in air
Mass under water

Loose Mix at Room Temperature

Calculations

Maximum Specific Gravity

•
$$G_{mm} = A / (A - C)$$

Where: A = mass of dry sample C = mass of sample under water

Example Calculations

G_{mm} = A / (A - C)
 mass of dry sample A = 2050.0
 mass of sample under water C = 1226.4

2050.0/(2050.0 - 1226.4) = 2.489

TMD – Theoretical Maximum Density

What is it?

• Density at 100% compaction

• Rock + Oil....No Air

TMD – Theoretical Maximum Density

TMD = Gmm x unit wt. of water (62.4 lbs/ft³)

If Gmm = 2.489,

 $TMD = 2.489 \text{ x } 62.4 = 155 \text{ lbs/ft}^3$

HMA Volumetric Terms

- Bulk specific gravity (BSG) of compacted HMA - Gmb
- Maximum specific gravity Gmm
- Air voids Va
- Voids in mineral aggregate, VMA
- Effective specific gravity of aggregate Gse
- Voids filled with asphalt, VFA

Hot Mix Asphalt Compaction

Field performance has shown design air voids:

- Below 3% are susceptible to rutting & shoving
- Over 5% are susceptible to raveling, oxidation
- 4% air voids typically allows for optimal design
 - Not too open
 - Little extra compaction under traffic

Percent Air Voids

Calculated using both specific gravities

Air voids =
$$(1 - \frac{G_{mb}}{G_{mm}}) 100$$

 $\frac{Mass agg + AC}{Vol. agg, AC, Air Voids}$ Mass agg + AC Mass agg + AC Vol. agg, AC, Air Voids Mass agg + AC Vol. agg, AC, Air Voids Mass agg + AC Volumetris Volumetris

Example Calculations

• Air voids: $- G_{mb} = 2.403$ $- G_{mm} = 2.489$

(1 - 2.403 / 2.489) 100 = 3.5 %

Volumetrics

Intent of Laboratory Compaction?

Simulate the in-place density of HMA after it has endured several years of traffic in the roadway Design Density

<u>Air Voids</u> 15-25% Before Rolling 6 – 9% After Rolling Future Traffic

<u>Air Voids</u> 3 – 5% Marshall 4% Superpave
Air Voids

- Important for Pavement Performance

 Stiffness and Strength
 - Rutting
 - Durability
 - Cracking
 - Raveling
 - Fatigue Life
 - Moisture Damage

HMA Volumetric Terms

- Bulk specific gravity of compacted HMA -Gmb
- Maximum specific gravity Gmm
- Air voids Va
- Voids in mineral aggregate, VMA
- Effective specific gravity of aggregate Gse
- Voids filled with asphalt, VFA

Voids in Mineral Aggregate

VMA is the void space available for effective asphalt and Air. It is also an indication of film thickness on the surface of the aggregate.

VMA is determined by gradation and particle texture.

Component Diagram

SP-2, Fig. 4.2

VMA = 100 - $\frac{G_{mb} P_s}{G_{sb}}$

• Given that $G_{mb} = 2.455$, $P_s = 95\%$, and $G_{sb} = 2.703$

$$\frac{\text{VMA} = 100}{2.703} = 13.7$$

Minimum VMA Requirements

Nominal Maximum
Aggregate Size, mm (in)Minimum VMA, percent9.5 (3/8)15.012.5 (1/2)14.019.0 (3/4)13.025.0 (1.0)12.037.5 (1.5)11.0

SP-2, Table 5.2

VMA and %AC

VMA Relationship

% Asphalt Binder

HMA Volumetric Terms

- Bulk specific gravity of compacted HMA -Gmb
- Maximum specific gravity Gmm
- Air voids -Va
- Voids in mineral aggregate, VMA
- Effective specific gravity of aggregate Gse
- Voids filled with asphalt, VFA

Effective Specific Gravity

Effective volume = volume of solid aggregate particle + volume of surface voids not filled with asphalt

Volumetrics

Effective Specific Gravity

G_{se} is an aggregate property, and is used to calculate asphalt absorption.

Example Calculations

Mixed with 5 % asphalt cement
G_{mm} = 2.535
G_b = 1.03

Percent Binder Absorbed

$$\mathbf{P_{ba}} = 100 \left(\frac{\mathbf{G_{se}} - \mathbf{G_{sb}}}{\mathbf{G_{sb}} \mathbf{G_{se}}} \right) \mathbf{G_{b}}$$

P_{ba} is the percent of absorbed asphalt by mass of aggregate

Effective Asphalt Content

The effective asphalt content is the total asphalt content minus the percent lost to absorption (based on mass of total mix).

HMA Volumetric Terms

- Bulk specific gravity of compacted HMA -Gmb
- Maximum specific gravity Gmm
- Air voids Va
- Voids in mineral aggregate, VMA
- Effective specific gravity of aggregate Gse
- Voids filled with asphalt, VFA

Voids Filled with Asphalt (VFA)

Definition

- percentage of VMA filled with asphalt
- Similar to degree of saturation in soils

Voids Filled with Asphalt

$VFA = 100 x \frac{VMA - V_a}{VMA}$

VFA is the percent of VMA that is filled with asphalt cement

Summary of Terms

- G_{mb} = Specific gravity of compacted HMA
- G_{mm} = Maximum specific gravity of loose HMA
- $V_a = Air voids$
- VMA = Voids in mineral aggregates
- G_{se} = Effective specific gravity of aggregate
- VFA = Voids filled with asphalt binder
- G_b = Specific gravity, asphalt binder
- G_{sb} = Bulk specific gravity of aggregate
- $P_{be} = \%$ of effective asphalt binder by total mass of mixture
- $P_b = \%$ of total asphalt binder by total mass of mixture
- $P_{ba} = \%$ of absorbed asphalt binder by mass of aggregate

MIXTURE DESIGN

Requirements in Common

- Sufficient asphalt binder to ensure a durable pavement
- Sufficient stability under traffic loads
- Sufficient air voids
 - Upper limit to prevent excessive environmental damage
 - Lower limit to allow room for initial densification due to traffic
- Sufficient workability

4 Steps of Superpave Mix Design

1. Materials Selection

2. Design Aggregate Structure

3. Design Binder Content

4. Moisture Sensitivity

Step 1: Materials Selection

• Materials Selection consists of:

- Choosing the correct asphalt binder
- Choosing the aggregates that meet the quality requirements for the mix

Superpave Asphalt Binder Specification

The grading system is based on climate PG 58 - 28

Performance Grade Min pavement temperature

Average 7-day max pavement temperature

Developed from Air Temperatures

Superpave Weather Database

 6500 stations in U.S. and Canada http://www.fhwa.dot.gov/research/tfhrc/pro grams/infrastructure/pavements/ltpp/ltppbi nd.cfm

- hottest seven-day temp (avg and std dev)
- coldest temp (avg and std dev)
- Calculated pavement temps used in PG selection

LTPP Bind Software

> 20 years

Binder Grade vs. Pavement Performance

Other Performance Factors:

- Rutting shear strength of mix, aggregate properties
- Fatigue Cracking pavement structure, traffic

Important Factor:

 Low temperature Cracking – correlates well to binder properties

Local Agency Programs Hot Mix Asphalt (HMA) Selection Guidelines Rev: 06/14/2016 - FHWA Approval: 08/29/2016

The following guidelines have been developed at the request of Local Agency Engineers for use on Local Agency projects. These guidelines have been reviewed and approved by the County Road Association of Michigan Engineering Committee. Previous experience and performance shall permit variations from these guidelines as per Section D. Alternative Mixes.

A. HMA Mixture Type and Binder Selection

Selection is based on present day two-way commercial ADT. The commercial ADT ranges for each of the mixture types have taken into account an assumed future traffic growth rate.

Com. ADT.	Com. ADT 0-300	Com. ADT 301-700	Com. ADT 701-1000	Com. ADT 1001-3400	Com. ADT 3401- 9999					
Mixture Type										
Тор	LVSP or 13A, 36A	4C 5E1/4E1	5E3, or 4E3	5E10, or 4E10	5E30, or 5E10					
Leveling	eveling LVSP or 13A		4E3	4E10	4E30					
Base	13A / 3C	2C/3C	3E3	3E10	3E30					
Binder Grades by Region										
Superior	Superior PG 58-34 PG 5		PG 58-34 PG 58-34							
Metro	PG 58-22	PG 64-22	PG 64-22	PG 64-22	PG 70-22P					
All Other	PG 58-28	PG64-28	PG-64-28	PG64-28	PG70-28P					

Note 1: If the designer wishes to reduce the target air voids on projects to 3.5%, a note needs to be added to the plans on the HMA Application Table stating that the air voids have been changed to 3.5% for that particular project for top and leveling courses. For mixtures meeting the definition of base course, field regress air void content to 3.0 percent with liquid asphalt cement unless specified otherwise on HMA application estimate.

Note 2: The mixture type in each traffic category listed in the above table is specifically designed to perform under their respective Commercial ADT. Selecting a mixture type that is specifically designed for a higher Commercial ADT than the project being designed may adversely affect performance.

Local Agency Guide

Local Agency Programs HMA Selection Guidelines

Developed for use on Local Agency Projects
Reviewed and Approved by CRA
Variations Allowed

Local Agency Programs HMA Selection Guidelines

SuperPave and Marshall mix designs
SuperPave for Commercial ADT > 700
Variations Allowed

Local Agency Programs HMA Selection Guidelines

Commercial ADT	0-300	301 - 700	701 – 1000	1001 - 3400	3401 – 9999
		Binder Grad	es by Region		
Superior	PG 58-34	PG 58-34	PG 58-34	PG 58-34	
Metro	PG 58-22	PG 64-22	PG 64-22	PG 64-22	PG 70-22P
All Other	PG 58-28	PG 64-28	PG 64-28	PG 64-28	PG 70-28P

For Surface and Leveling Courses

Aggregate Consensus Properties

CFS:KPK

2 of 2

12SP	-902	2E-0)3
	04-0)3-1	5

Table 902-6 Superpaye Final Aggregate Blend Physical Requirements													
		Percent Crushed Minimum Criteria		Fine Aggregate Angularity % Minimum Criteria		% Sand Equivalent Minimum Criteria		Los Angeles Abrasion % Loss Maximum Criteria		% Soft Particles Maximum Criteria (a)		% Flat and Elongated Particles Maximum Criteria (b)	
Est. Traffic (million ESAL)	Mix Type	Top & Leveling Courses	Base Course	Top & Leveling Courses	Base Course	Top & Leveling Courses	Base Course	Top & Leveling Courses	Base Course	Top & Leveling Courses	Base Course	Top & Leveling Courses	Base Course
< 0.3	LVSP	55/—		_	_	40	40	45	45	10	10		—
< 0.3	E03	55/—	_	_	_	40	40	45	45	10	10		—
<u>></u> 0.3 -<1.0	E1	65/—	_	40	_	40	40	40	45	10	10	_	—
<u>></u> 1.0 - < 3	E3	75/—	50/—	43	40	40	40	35	40	5	5	10	10
<u>></u> 3 - <10	E10	85/80	<mark>60/</mark> —	45	40	45	45	35	40	5	5	10	10
<u>></u> 10 - <30	E30	95/90	80/75	45	40	45	45	35	35	3	4.5	10	10
<u>></u> 30 - <100	E50	100/100	95/90	45	45	50	50	35	35	3	4.5	10	10

(a) Soft particles maximum is the sum of the shale, siltstone, ochre, coal, clay-ironstone and particles that are structurally weak or are non-durable in service.(b) Maximum by weight with a 1 to 5 aspect ratio.

Note: "85/80" denotes that 85 percent of the coarse aggregate has one fractured face and 80 percent has at least two fractured faces.

Steps of Superpave HMA Mix Design

1. Materials Selection

2. Design Aggregate Structure

3. Design Binder Content

4. Moisture Sensitivity

Step 2: Aggregate Gradation

- Establish trial aggregate blends
 - 3 suggested
 - evaluate combined aggregate properties
- Estimate optimum asphalt binder content
- Manufacture and compact trial blends
- Evaluate the trial blends
- Select the most promising blend

Aggregate Gradation

Table 902-5										
Superpave Final Aggregate Blend Gradation Requirements										
	Percent Passing Criteria (control points)									
		Mixture Number								
	3 3									
Standard			Leveling	Base						
Sieve	5	4	Course	Course	2	LVSP (a)				
1½ inch	_	_	_	_	100	_				
1 inch	_	_	100	100	90-100	_				
3/4 inch	_	100	90-100	90-100	≤90	100				
1/2 inch	100	90-100	≤90	≤90	_	75-95				
3/8 inch	90-100	≤90	_	_	_	60-90				
No. 4	≤90	_	_	_	_	45-80				
No. 8	47-67	39-58	35-49	23-49	19-45	30-65				
No. 16	_	_	_	_	_	20-50				
No. 30	_	_	_	_	_	15-40				
No. 50	_	_	_	_	_	10-25				
No. 100	_	_	_	_	_	5-15				
No. 200	No. 200 2.0-10.0 2.0-10.0 2.0-8.0 2.0-8.0 1.0-7.0 3-6									
a. For LVSP, less than 50 percent of the material passing the No. 4 sieve may pass the No. 30 sieve.										

Establish Trial Blends

Develop three gradations based on
Stockpile gradation information
Gradation specification
Optimize use of materials in the most economical blends

Estimate properties of combined stockpiles

Establish trial asphalt binder content

• Superpave Method

• Engineering judgement method

Trial Asphalt Binder Content

Use known or estimated values for

 Effective aggregate specific gravity, G_{se}
 Asphalt binder absorbed, V_{ba}

 Calculate the effective binder content, V_{be}
Trial Asphalt Binder Content

• Calculate the initial asphalt binder content: $P_{bi} = \frac{100 G_b (V_{be} + V_{ba})}{(G_b (V_{be} + V_{ba})) + W_s}$

 $W_s = P_s (1 - V_a)$

 $(\mathbf{P_b} / \mathbf{G_b}) + (\mathbf{P_s} \mathbf{G_s})$

Next steps

Sample preparation

- Select mixing and compaction temperatures
- Preheat aggregates and asphalt
- Mix components
- Compact specimens

• Extrude and determine volumetrics

General Guidance

• Compact the trial mixtures in accordance with AASHTO T 312 which now requires specimens be compacted to the design number of gyrations (N_d)

When doing a mix design you compact a pair of samples to N_{maximum} and check them to see if the N_{maximum} value of 98% is exceeded.

Superpave Compaction criteria

Table 501-3 Superpave Gyratory Compactor (SGC) Compaction Criteria											
Estimated Traffic	Number of Gyrations (a)										
(million ESAL)	Mix Type	%G _{mm} at (N _i)	Ni	Nd	N _m						
≤0.3	LVSP	91.5%	6	45	70						
≤0.3	E03	91.5%	7	50	75						
>0.3 – ≤1.0	E1 90.5% 7 76										
>1.0 – ≤3.0	E3	90.5%	7	86	134						
>3.0 – ≤10	E10	89.0%	8	96	152						
>10 – ≤30	E30	89.0%	8	109	174						
>30 – ≤100	E50	89.0%	9	126	204						
a. Compact mix specimens fabricated in the SGC to N _d . Use height data provided by the SGC to calculate volumetric properties at N _i . Compact mix specimens at optimum P _b to verify N _m for mix design specimens only.											

Estimate Aggregate Blend Properties (Example)

Property Criter	ia	Trial Blend		
		1	2	3
N _{initial} , %	< 89.0	87.1	85.6	86.3
N _{design} , %	96.0	97.6	97.4	96.5
N _{max} , %	< 98.0	96.2	95.7	95.2
Air Voids, %	4	4.4	4.4	4.4
VMA, %	13	12.7	13.0	13.5

4 Steps of Superpave Mix Design

1. Materials Selection

2. Design Aggregate Structure

3. Design Binder Content

4. Moisture Sensitivity

Design Binder Content

- 1) Choose the "Best" Trial Blend
- 2) Mix Aggregates and Binder at 4 different Asphalt Contents
 - > 0.5% Increments
- 3) Compact Specimens
- 4) Extrude and Determine Volumetric Properties

Design Binder Content

Superpave Mixture Requirements

• Mixture Volumetrics

- Air Voids (V_a)
- Mixture Density Characteristics
- Voids in the Mineral Aggregate (VMA)
- Voids Filled with Asphalt (VFA)
- Dust Proportion
- Moisture Sensitivity

Michigan Department of Transportation 1858 (03/08)

Mix Design

Summary

Sheet -

SuperPave

SUBMITTED SUPERPAVE MIX DESIGN SUMMARY SHEET

CONTRACTOR			CONSULTANT				
CONTROL SECTION I.D.	JOB N	JOB NO. TYPE OF MIXTURE					
N _{INT}	N _{DES}			N _{MAX}			
MIXING TEMPERTURE	RANGE °F		C	OMPACTION TE	MPERTURE RANGE	۴	
°F		°F			°F	°F	
SUPERPAVE	MIX PROPER	TIES AT TES	TED & OPTIM	UM ASPHALT	CONTENT	_	
		TEST I	POINTS		RECOMMENDED	VERIFICATION	
ITEM		4 POINT	DESIGN		Regression Value at	RESULTS	
	FIN	IAL	BL	END	Content	@ N MAX	
ASPHALT CONTENT (%)	5.0	5.5	6.0	6.5			
BULK SPECIFIC GRAVITY @ N DES							
BULK SPECIFIC GRAVITY @ N MAX							
THEORETICAL MAXIMUM (S.G.)							
AIR VOIDS (%) @ N DES							
VOIDS IN MINERAL AGGREGATE % (VMA) @ N DEB							
VOIDS FILLED WITH ASPHALT % (VFA) @ N DES							
% G _{mm} @ N _{INT}							
% G _{mm} @ N _{DES}							
% G _{mm} @ N _{MAX}							
FINES/EFF ASPHALT RATIO							

The submitted superpave mix design final blend shall have a minimum of 4 test points at 0.5 percent asphalt content increments. At least one full asphalt content (0.5%) above and below optimum asphalt content is required.

ASPHALT CONTENT OF SUBMITTED SUPERPAVE MIX DESIGN _5.7

ASPHALT SPECIFIC GRAVITY

SPECIFIC GRAVITY OF COMBINED AGGREGATE G_{sb}

Michigan Department of Transportation 1813 (02/06)

SUBMITTED MIX DESIGN SUMMARY SHEET

CONTRACTOR		C	CONSULTANT							
CONTROL SECTION I.D.	JOB NO.	I		TYPE OF MIXTURE						
MIXING TEMPERATU	IRE [°] F		COMPACTION TEMPERATURE °F							
°F		_°F	°F°F							
MARSHALL MI	X PROPERTIE	S AT TESTE	ED & OPTIMUM	ASPHALT	CONTENT					
ITEM			TEST POINTS			RECOMMENDED OPTIMUM				
		Regression Value at Optimum Asphalt Content								
ASPHALT CONTENT (%)	4.5	5.0	5.5	6.0	6.5	5.7				
BULK SPECIFIC GRAVITY (Compacted)										
THEORETICAL MAXIMUM (S.G.)										
AIR VOIDS (%)										
VOIDS IN MINERAL AGGREGATE % (VMA)										
VOIDS FILLED WITH ASPHALT % (VFA)										
STABILITY (LBS.)										
FLOW (0.01 IN.)										
COMPACTIVE EFFORT (BLOWS)										
		NOTE	S							
SPECIFIC GRAVITY		Gsb								
ASPHALT CONTENT OF SUBMITTED MIX	DESIGN 5.7									
ASPHALT SPECIFIC GRAVITY										

The submitted mix design shall have a minimum of 4 test points at 0.5 percent asphalt content increments. At least one full asphalt content (0.5%) above and below optimum asphalt content is required.

Mix Design Summary Sheet – Marshall

Mix Design Example

Michigan Departm	nent of Banart of Tool							File 300			
Transportation for	m 1931		SU	PERPAV	E 18 HW	Design	Mix For	mula			
Distribution: F	Project E	ngineer (1) - TM	1(1) 1	lix Desla	n (1) (Contract	or (1) I	Bit File (1	ACCEP	TED
Control Section		Job Nu	mber	Project Engineer Engine			Engine	sering Firm Date			
Bi06 54038		54	321A	1	2. Steel P	.E.		MDOT		8/	NOX
Contractor	maral Da				Plant Lo	cation			Plant No	».	
Mix Tune Mix Design Mumber					Location	BIG	CAPIDS		Bassilla	701-01	
5E3	MIX Dec	06MD540			Location				specific	ation 139/0501/	(E)
% Air Voids	VMA	VMA				P200/P.		AWI	·	AI	<u>, , , , , , , , , , , , , , , , , , , </u>
4.0		15.9		7	4.8		.1	2	88	4	0.9
Gmm	Gmb	0.070		Gb		Gsb		Gse		Film Thi	ckness
2.40/	A	2.309		<u> </u>	020 E	<u>Z</u> /	644	2,0	182		.21
Pit Number	54-101	54-101	95-76	95.76		- r				J	N AC
Angenanta Tuno	Read ESH	Sine front	00.10	00.10		<u> </u>				Ran	70 AL
Addreame type	eenuroo	coall cano	enered	Dang	2019	L				RapMa	9.48%
Blend %	10.0%	15.0%	26.0%	33.0%	1.0%					15.0%	Combined
Sieve Size			G	RADATI	DN		21	% Binde	r of RAP	3.60	Gradation
1 1/2" - (37.5mm)					L						0.0%
1" - (25.0mm)			-				1				0.0%
3/4" - (19mm)											0.0%
1/2" - (12.5mm)	100.0%	100.0%	100.0%	100.0%	100.0%		1			100.0%	100.0%
3/8" - (9.5mm)	100.0%	100.0%	100.0%	100.0%	100.0%					87.5%	98.1%
#4 - (4.75mm)	91.3%	91.7%	65.0%	99.9%	100.0%					67.9%	83.9%
#8 - (2.36mm)	69.9%	59.6%	39.7%	79.9%	100.0%					50.2%	61.1%
#16 - (1.18mm)	52.4%	38.7%	29.2%	66.2%	100.0%					40.8%	47.6%
#30 - (0.80mm)	36.8%	26.3%	23.8%	54.9%	100.0%					33.6%	38.0%
#50 - (0.30mm)	11.8%	18.0%	17.2%	24.9%	100.0%					20.8%	20.7%
#100 - (0.1mm)	3.6%	11.7%	11.7%	2.5%	100.0%					10.6%	8.6%
#200 - (0.075mm)	2.5%	7.7%	9.0%	0.4%	85.0%					7.4%	5.8%
1 FACE CRUSH %	30.0%	100.0%	100.0%	30.0%						75.0%	88.6%
2 FACE CRUSH %											-
L.A. ABRASION & YEAR	22-03	25-02	22-03								
Angularity Index	37.8	48.8	43	38							40.90
AWI FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
AWI VALUE #16	225	401	300	240						240	288
COMBINED Calc. Gsb	2.601	2.720	2.610	2.648						2.675	2.648
#4+ COARSE BULK 8.G.			2.621								
#8 COARSE BULK S.G.		2.702	2.582					1			
FINE BULK S.G.	2.601	2.73	2.619	2.648						2.678	
FLAT & ELONGATED %											
SOFT PARTICLES %	0.1		0.5	0.5					a later of the second se	0.5	
	Asphalt	Binder	Grade		A.C. Supplier I.D. # % New A				C Added		
ļ	pritate		PG 6	4-28	ABS 100	5		5.1	6		
REMARKS:											
											I

The billness voting of aggregated datasets that are not on the individual models with the positive and individual bill with the positive and individual bill bill and the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the set of the positive and the set of the positive and the set of the set of the positive and the positive and the set of the positive and the positive and the set of the positive and the positive and the positive and the set of the positive and the set of the positive and the posi

Bituminous Engineer

Mix Design Example

Michigan Departm	partment of Report of Test								File 300			
ransportation for	SUPERPAVE ** HMA Design Mix Formula								ACCEPTED			
Distribution: F	Project Er	ngineer (1) - TM	l(1) №	ix Desig	n (1) C	Contracte	r (1) - E	lit File (1)		
Control Section Job Number Bi06 54038 54321A				Project Engineer Engineer R. Steel P.E.			ring Firm MDOT		Date 8/9/0X			
Contractor					Plant Lo	cation			Plant No).		
Ge	neral Par	vement				BIG R	APIDS			701-01		
Mix Type 5E3	E3 06MD540				Project Location Specifi						cation 03SP501(F)	
% Air Voids	VMA			VFA		P200/P _{br}		AWI		AI	· · · · ·	
4.0		15.9		74	4.8	1.1		288		40.9		
Gmm	Gmb	Gb			b Gsb			Gse		Film Thickness		
2.457		2.359		1.	29	2.6	544	2,682 7.21			21	
	A	В	C	D	E	F	G	H				
Pit Number	54-101	54-101	85-76	95-76						Piant	% AC	
Aggregate Type	Sand FSU	Siag Sand	616 250	Gand	DHF					Rap	5.7	
Blend %	10.0%	15.0%	26.0%	33.0%	1.0%					15.0%	Combined	
Sieve Size			G	RADATIC	N	% Binder of R				3.60	Gradation	
1 1/2" - (37.5mm)											0.0%	
1" - (25.0mm)											0.0%	
3/4" - (19mm)				4							0.0%	
1/2" - (12.5mm)	100.0%	100.0%	100.0%	100.0%	100.0%					100.0%	100.0%	
3/8" - (9.5mm)	100.0%	100.0%	100.0%	100.0%	100.0%					87.5%	98.1%	
#4 - (4.75mm)	91.3%	91.7%	65.0%	99.9%	100.0%					67.9%	83.9%	
#8 - (2.36mm)	69.9%	59.6%	39.7%	79.9%	100.0%					50.2%	61.1%	

Mix Design Example

and a fact seried	91.979	0.111.10	00.0 %	001038	100.076					67.9%	83.9%
#8 - (2.36mm)	69.9%	59.6%	39.7%	79.9%	100.0%					50.2%	61.1%
#16 - (1.18mm)	52.4%	38.7%	29.2%	66.2%	100.0%					40.8%	47.6%
#30 - (0.80mm)	36.8%	26.3%	23.8%	54.9%	100.0%					33.6%	38.0%
#50 - (0.30mm)	11.8%	18.0%	17.2%	24.9%	100.0%					20.8%	20.7%
#100 - (0.1mm)	3.6%	11.7%	11.7%	2.5%	100.0%					10.6%	8.6%
#200 - (0.075mm)	2.5%	7.7%	9.0%	0.4%	85.0%					7.4%	5.8%
1 FACE CRUSH %	30.0%	100.0%	100.0%	30.0%						75.0%	88.6%
2 FACE CRUSH %											-
L.A. ABRASION & YEAR	22-03	25-02	22-03								
Angularity Index	37.8	48.8	43	38							40.90
AWI FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
AWI VALUE #16	225	401	300	240						240	288
COMBINED Calc. Gsb	2.601	2.720	2.610	2,648						2.675	2.648
#4+ COARSE BULK S.G.			2.621								
#8 COARSE BULK S.G.		2.702	2.582								
FINE BULK S.G.	2.601	2.73	2.619	2,648						2.678	
FLAT & ELONGATED %											
SOFT PARTICLES %	0.1		0.5	0.5						0.5	
	Acabalt	Disatas	Grade		A.C. Supplier I.D. #			% New AC Added			
	Aspnar binder		PG 64-28		ABS 1005			5.1	16		
REMARKS:											
NERPHONE.											

The blourer content and suggraphic characteristics are based as the autoritied methods with the guaterian and interduction technical. Vertakes is materials at field conditions employees adjustments of the min design (see TM for item 2011 for field equilation). This interdation because in the design is velicitied to be applied or adjusted without method equivalent of the Wavelmeet Services Unit. A signed steps to an file with the Electronic Services Unit. Toxicol for information.

a.

4 Steps of Superpave Mix Design

1. Materials Selection

2. Design Aggregate Structure

3. Design Binder Content

4. Moisture Sensitivity

Moisture Sensitivity

AASTHO T-283, Tensile Strength Ratio (TSR) Test

- 6 specimens compacted to 6 8% air voids
 - 3 conditioned and 3 unconditioned
- Conditioned specimens
 - 55 to 80 percent saturation
 - Freeze-thaw cycle (min. 16 Hrs. freeze)
 - 24 hour soak in 140°F water bath
 - Cooled to 77°F and broken on IDT Tester
- Unconditioned specimens
 - Left undisturbed until broken on IDT Tester
- TSR $\geq 80\%$

Moisture Sensitivity

AASTHO T-283, Tensile Strength Ratio (TSR) Test

- Testing of specimens
 - Remove from 77°F (25°C) water bath and place between two bearing plates.
 - Apply load to specimens by means of constant rate movement, two inches (50 mm) per minute.
 - Record maximum compressive strength.

Moisture Sensitivity

AASTHO T-283, Tensile Strength Ratio (TSR) Test

Calculations

- Take the average tensile strength of the three conditioned specimens and divide by the average of the three unconditioned specimens.
- The ratio has to be a minimum of 80%.

$$TSR = \frac{T \ Conditioned \ (Avg.)}{T \ Unconditioned \ (Avg.)}$$

Questions?

<u>www.apa-mi.org</u> 517.323.7800 800.292.5959