

Pavement Smoothness and Sustainability

Amlan Mukherjee, PhD Associate Professor, Department of Civil & Environmental Engineering Michigan Technological University

Benjamin Ciavola, PhD Lead Analyst

Jay Vana Lead Developer

> NAPA Annual Meeting, February 4th, 2014, Boca Raton, FL

Motivation

Transportation accounts for 28% of the total U.S. GHG Emissions

Reduce greenhouse gases emissions from:

- Raw material extraction and/or acquisition
- Construction material production
- Equipment usage on site
- Use phase
- Develop strategies to reduce greenhouse gas emissions at all levels and life cycle stages:
 - Operational: Construction, Maintenance, Rehabilitation
 - Strategic: Alternative design, improved decision processes

What is Life Cycle Assessment

Use/Service Life emissions account for ~90% of pavement life cycle emissions Accounting for environmental impacts through all the life cycle phases of products and processes

Mining and Extraction

- Manufacturing
- Transportation
- Construction
- Use/Service Life
- End-of-Life

Life Cycle Assessment (LCA)

- An LCA as a decision-making tool:
 - To choose between comparable alternatives
- What is the purpose of the LCA:
 - System boundaries may be different:
 - What's in, what's not
 - Units for comparison: "functional units" may vary
 - Lane mile or volume of work done?
- Who is conducting the LCA:
 - Stakeholder perspectives vary

Technical challenges

Life Cycle Assessment based approaches:

Limited standards for highway industry

ISO 14040, 14044 – limited guidance

Best approach: Univ. of California, PRC guidelines (2010)

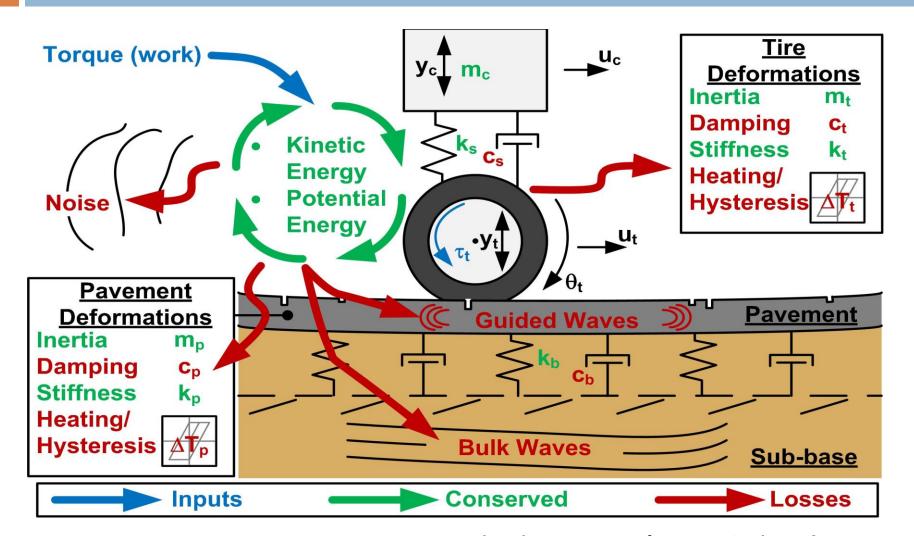
Purpose not yet clear: comparisons or benchmarks?

- Alignment of objectives: consideration of services
- Rating Systems:
 - Value laden approach
 - Tend to be prescriptive

Future of LCA Products

Similar to a Nutrition label

Serving Si: Servings P	ze 2 craci	kers (14	g)			
Servings P	er conta	HEI ADU	0121			
Amount Per	Serving					
Calories (ies from	Fat 15			
		_	ly Value			
Total Fat	1.50	.o Dai	2%			
			0%			
Saturated Fat 0g C						
Trans Fa	t Og					
Cholesterol Omg						
Sodium 70mg						
Total Carl	bohydrat	te 10g	3%			
Dietary Fiber Less than 1g 3%						
Sugars 0g						
Protein 20						
Protein 2	1					
Vitamin A (0% •	Vitamin	C 0%			
Calcium 0	36 ·	Iron 2%				
Percent Daih calorie diet. or lower dep	Your daily va	lues may b	be higher			
Total Fat	Less than		80g			
Sat Fat	Less than		259			
Cholesterol	Less than		300mg			
Sodium Total Carboh	Less than	2400mg 300a	2400mg 375g			
Dietary Fibr		25g	375g 30g			


- Environmental Product Declarations (EPD)
 - ISO Type III Environmental Labeling
- Based on Product Category Rules (PCR)
 - Establishes scope and units of LCA
 - Categories such as Global Warming Potential, Eutrophication etc.
- Business-2-Business: Cradle to gate
- Business-2-Consumer: Cradle to grave

Pavement Use Phase

- Use phase Highest impact
- Rolling Resistance
 - Deflection, Roughness, Texture
 - Speed, Air Temperature
 - Pavement type
 - Grade, Super Elevation
- Different models

 - NCHRP 1-45 Vehicle Operating Costs

Pavement Vehicle Interface

Used with permission from Dr. Andrew Swartz

Objective

- Investigate factors that influence IRI:
 - How does IRI change over time?
 - What conditions influence IRI?
 - What kind of maintenance plans deliver smooth pavements?
- Relate fuel efficiency (as a function of change in IRI) to
 - Maintenance schedules
 - Pavement type
 - Regional factors.
- Take full advantage of existing work

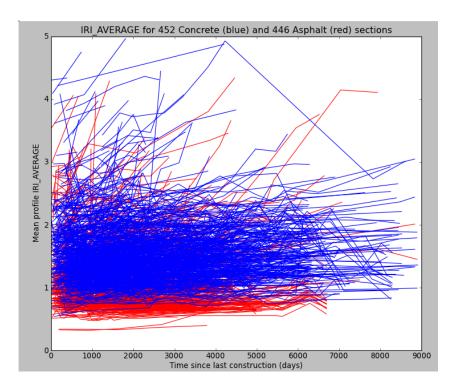
Studies so far

- Measures how IRI influences Factor X
 - Chati et al.: How IRI impacts fuel efficiency
 - Dasari et al: How IRI impacts structural number
- Calibration of predictive systems like ME-PDG, HDM-4
 - Given a starting IRI how is it likely to change/increase as time passes
 - Based on estimation of IRI as a function of other factors (e.g. faults/cracks per unit length, etc.)

The IRI measure

- Units: in/mile or m/km
- □ A measured quantity objective and reproducible
- Good replacement for subjective PASER measures
- Models exist
 - ME-PDG: NCHRP 1-37A
 - **Chatti et al.:** 2 m/km \rightarrow 1-2% reduction in fuel consumption
- Reliable metric generally speaking.
- Caution: using calculated values to indicate level of service – best analyzed as a measure.

The IRI measure


- Units: in/mile or m/km
- □ A measured quantity objective and reproducible
- Good replacement for subjective PASER measures
- Models exist
 - ME-PDG: NCHRP 1-37A
 - **Chatti et al.:** 2 m/km \rightarrow 1-2% reduction in fuel consumption
- Reliable metric generally speaking.
- Caution: using calculated values to indicate level of service – best analyzed as a measure.

Method

- Analyze LTPP sections:
 - Clean the datasets ...
 - or identify suitable subset
- Cross classify by:
 - Region,
 - K-ESAL (traffic load)
 - Pavement type: AC, JPCP, CRCP (and flavors)
 - Time of day measurements

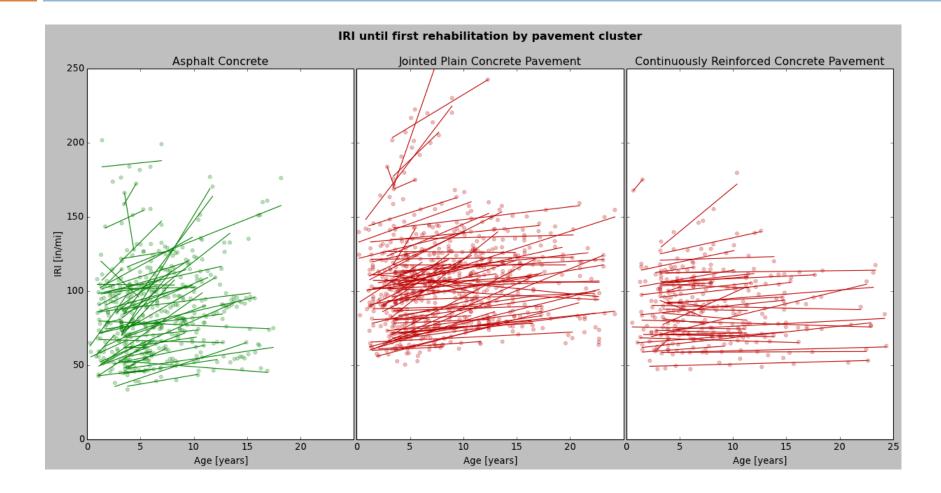
Initial plot

- Trends difficult to identify
- Possible corrupted data
- Cleaning difficult
- Required: a prevalidated dataset

- Subset that was used to calibrate ME-PDG IRI change models
- Data subset is reliable because:
 - The models ensured that calculated IRI (from models) closely co-related with the observed IRI (from LTPP)
 - Data sets are as valid as our understanding of IRI

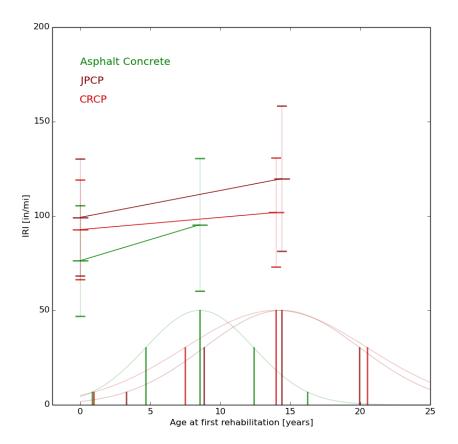
Complicating Factors

- LTPP Dataset
 - Incomplete
 - Possibly corrupt in places
- Practices that used to be vs. that are
- Different studies for different purposes
- The data is difficult to access
- Nothing "Normal" about anything

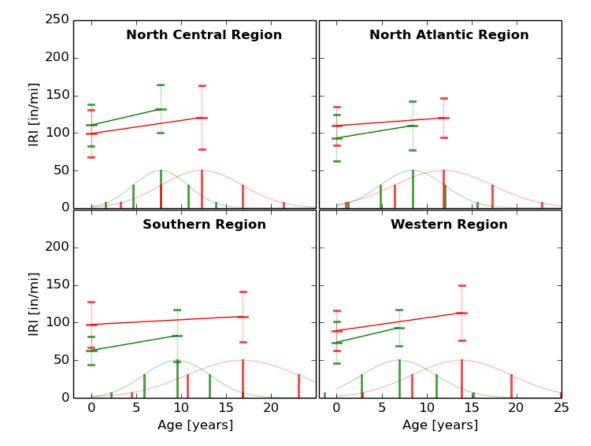

Potentially Useful Factors

- Rate of change of IRI over time
 - Initial IRI
 - Final IRI (at the time of intervention)
 - Time to intervention
- Most effective interventions
- Identify factors that impact change in IRI
 - Climate/region
 - Pavement type
 - Traffic loading
- Effective construction methods

Time to First Intervention

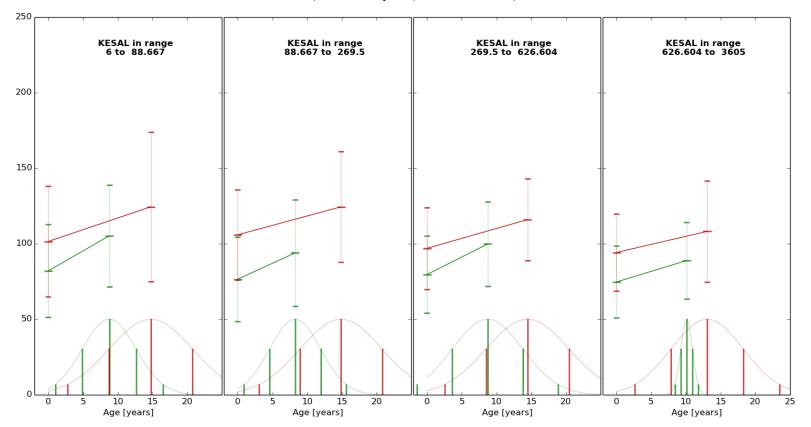

- Metric is relatively free of differing policies
- Three distributions:
 - Initial IRI
 - Final IRI (at the time of intervention)
 - Time to intervention

Basic Trends: By Pavement Type



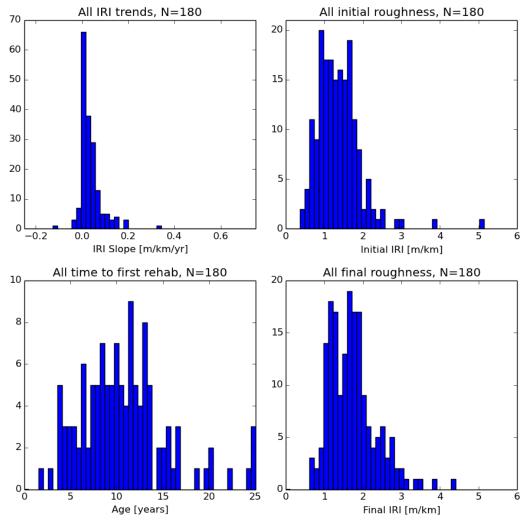
Basic Trends: By Pavement Type

IRI until first rehabilitation by pavement cluster

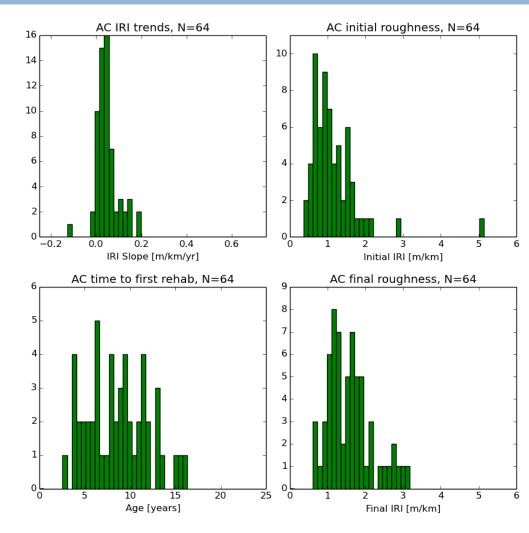


Basic Trends: By Region

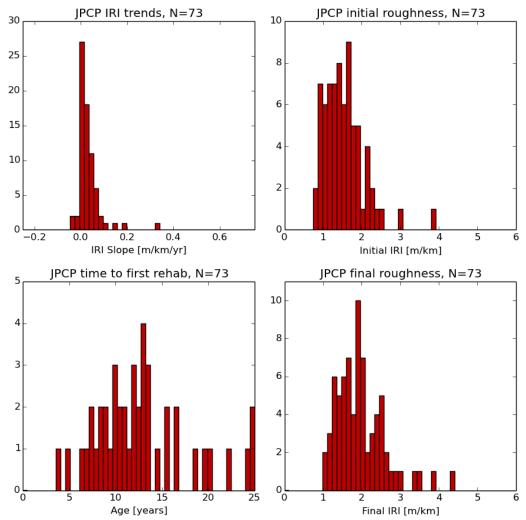
IRI until first rehabilitation by region


Basic Trends: By ESAL (Traffic Loading)

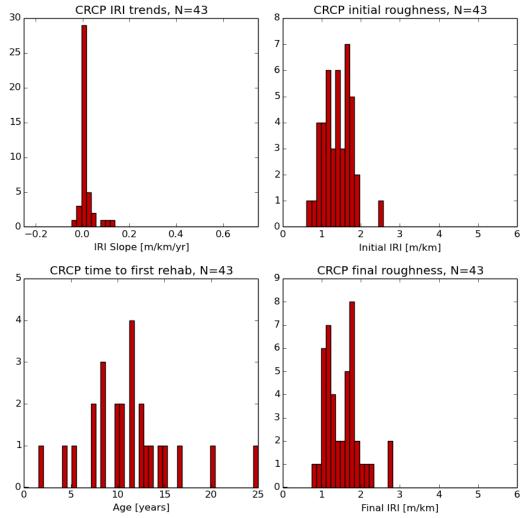
IRI Trends by KESAL quartile until first rehabilitation (Green = Asphalt, Red = Concrete)


Basic Trends: All Sections

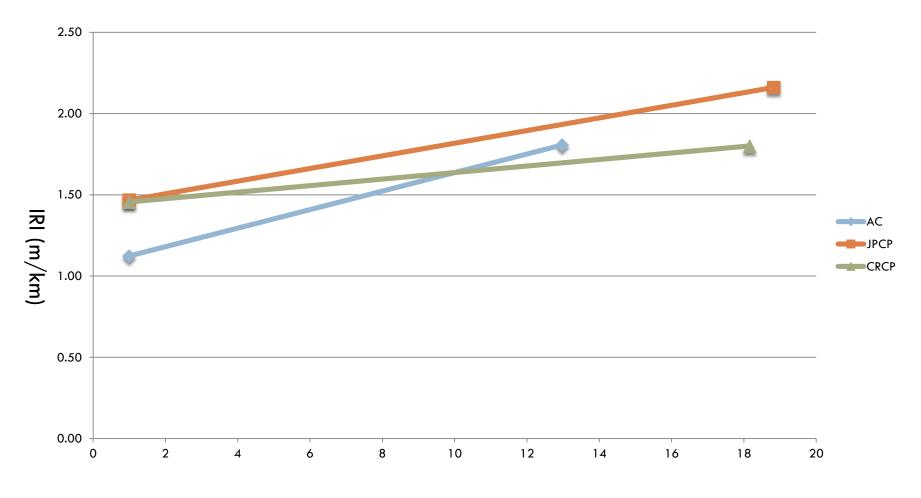
- Initial IRI: 1.35 m/km
- □ Final IRI: 1.92 m/km
- Time to First Intervention: 15.65 years


Basic Trends: Asphalt

- Initial IRI: 1.12 m/km
- □ Final IRI: 1.81 m/km
- Time to First Intervention: 11.97 years


Basic Trends: JPCP

- Initial IRI: 1.47 m/km
- □ Final IRI: 2.16 m/km
- Time to First
 Intervention: 17.82
 years



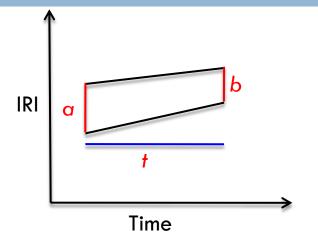
Basic Trends: CRCP

- Initial IRI: 1.46 m/km
- □ Final IRI: 1.8 m/km
- Time to First Intervention: 17.15 years

Basic Trends: Summarized

Years

Significance: Statistical

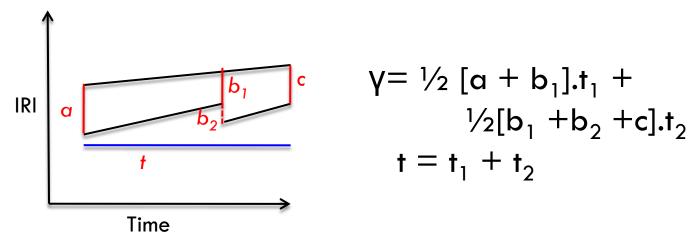

- Hypothesis: No difference between rate of change of IRI between AC and XXCP
 - Consider time rate change (m/km/year)
- \square *p-value* of difference between time rates = 0.006
- □ Statistically significant difference.

- Specify goal of study:
 - Limited overloading of models
 - Caution: sometimes benchmark, not compare
- When comparing two alternatives:
 - Defining a metric appropriate caveats
 - Statistical significance vs. Actual significance
- Who is this study meant for?
 - The decision-making interface
- Transparency and easy repeatability

Significance: Actual

- Rate of change of IRI
 AC: 0.06m/km/year
 JPCP: 0.04m/km/year
 Over time period of 12 years:
 a = Initial Diff
 b = Final Diff
 - t = Time Period

Difference of $\sim 3-4\%$ fuel consumption up to time to first intervention


Significance: Actual

- \Box Average fuel consumption¹:
 - Passenger vehicles: 498 gallons/year
 - Light duty trucks: 694 gallons/year
- □ 254,212,610 passenger vehicles and distribution²:
 - Light duty vehicle, short + long wheel base: 92.5%
 - 2 axles and 6 tires + Truck, combination: 4.3%
 - Motorcycles, etc.
- Savings per year: 433 Million gallons of gasoline
 - 0.3% of Annual US Gasoline Consumption (2011)

¹Office of Transportation and Air Quality - EPA420-F-08-024 - October 2008 ²RITA BTS Table 1-11. US Bureau of Transportation Statistics.

Critique of metric

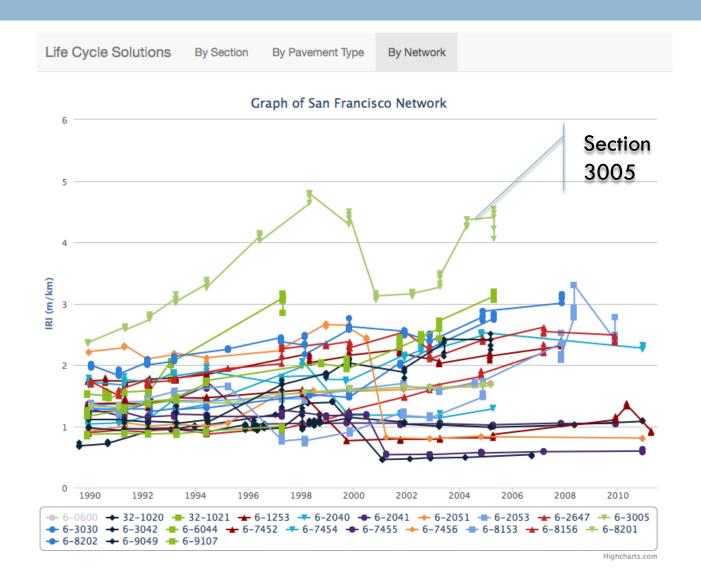
- Penalizes Asphalt:
 - After 12 years: IRI reduces due to intervention
- Penalizes Concrete:
 - Provides a longer span to first intervention
- An appropriate metric would:

Introduces Complications

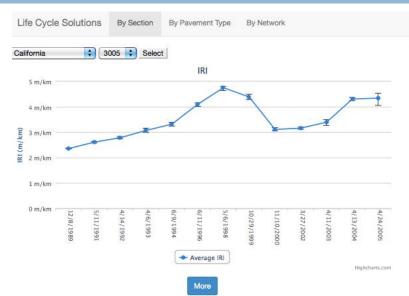
- How do the following balance out?
 - Cost of intervention
 - Change in long-term fuel consumption
 - Life cycle impacts of materials and construction
 - Traffic loading
 - Context of network

Effective Interventions

- □ Full depth joint repairs (20-30% reduction in IRI)
- □ Slab replacement ($\sim 20\%$ reduction in IRI)
- Surface grinding (>30% reduction in IRI)
- Surface treatments (20-40% reduction in IRI)
 - Tag coats
 - Fog seal coats
- What are the sequences?


Towards Context Sensitive Solutions

- Try not to generalize
 - Solutions must be sensitive to context
 - Transparency is critical
- Statistical significance: handle with caution
 - Nothing is "Normal"
 - Failure statistics may prove to be better suited
- Consider network based approach
 - Use actual data
 - Empower decision-makers


The Website

- Easy Access to LTPP IRI data
 - Transparency
- Allow for customized assessment by stakeholders
- Allow for network wide assessment by agencies
 - Integration with PE-2 Project Level Perspective

Network View

Section View

US-5

JPCP Over Non-Bituminous Treated Base

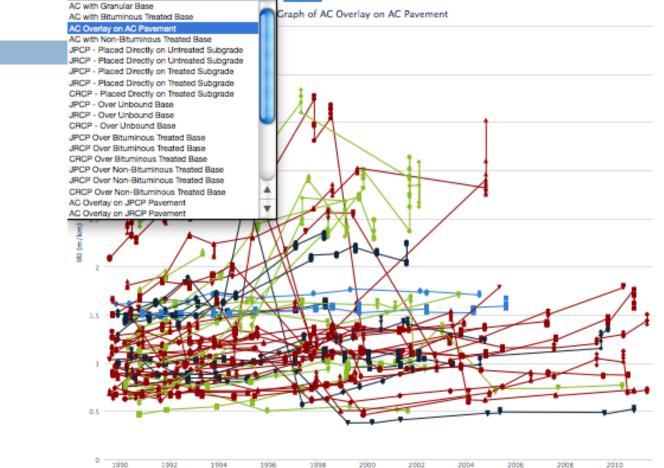
ESAL: 1612,000, Experiment 3 (GPS)

1 May 1996: Skin Patching, Full-Depth Patching of PCC Pavement Other Than at Joint

1 July 1999: Full-Depth Patching of PCC Pavement Other Than at Joint

1 July 2000: Lane-Shoulder Longitudinal Joint Sealing, Crack Sealing, Full-Depth Patching of PCC Pavement Other Than at Joint, Transverse Joint Sealing

1 July 2002: Full-Depth Patching of PCC Pavement Other Than at Joint


1 April 2004: Lane-Shoulder Longitudinal Joint Sealing, Crack Sealing, Transverse Joint Sealing

Select

:

AC Overlay on AC Pavement

Region

ESALs

Highcharts.com

Pavement Type View

PVI in LCA

PE-2 currently:

- Only accounts for vehicle emissions using MOVES
- □ In future:
 - Account for network level IRI change
 - Based on ESALS, Pavement Type
 - Type of Intervention

Output Life Cycle Emission Report								
GENERAL INFORMATION								
Generalized Roadway Speed: 🔘 55mph 💿 70mph				Region				
Avera	ge Daily Traffic (ADT): 8800							
Projec	Project Length (in miles): 10							
Numb	er of Lanes: 4		Traffic Load					
BUII	LD LIFE CYCLE							
M2 Transverse and Long. Joint Cutting and Resealing (Conc.) Intervention Year: 12								
Projec	t Duration Days: 75 Add							
Year	Јор Туре		Туре	Emissions per Lanemile	Project Duration Days			
1	Use Phase: 418.4897							
1	Work Zone Initial: 10.5451							
1	Concrete Reconstruct		R1	1009.8826 MT of CO2 Eq/lanemile	250			
1	Subtotal: 1438.9174							
2	Use Phase: 422.6746							
3	Use Phase: 426.9013							
4	Use Phase: 431.1703			Διρι	/At			
5	Use Phase: 435.482		/					
6	Use Phase: 439.8369							
7	Use Phase: 444.2352	_K						
8	Use Phase: 448.6776							
9	Use Phase: 453.1644							
10	Use Phase: 457.696							
11	Use Phase: 462.273			Kind of Tree	atment			
12	Use Phase: 466.8957				_			
12	Work Zone: 3.1635							
12	Transverse and Long. Jeint Cutting and (Conc.)	Resealing	M2	4.8217 MT of CO2 Eq/lanemile	75			

Thank You

Acknowledgments: National Asphalt Pavement Association

- Dr. Howard Marks, Dr. Heather Dylla.

Region 1							
	Maintenance Operations						
	Cycle 1	Cycle 2	Cycle 3				
Age (yrs)	6.04	10.13	15.3				
Distress Index (Before/After)							
Value	10.01/2.55	11.4/2.2	35/0				
Region 2							
Maintenance Operations							
	Cycle 1	Cycle 2	Cycle 3				
Age (yrs)	7.44	12.75	15				
Distress Index (Before/After)							
Value	27.3/11.4	24.7/17.5	35/0				